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Computational fluid dynamics (CFD) algorithms constructed using high-order operators can
potentially provide higher accuracy at a lower computational cost compared to numerical schemes
developed using low-order methods. Recently, generalized summation-by-parts (GSBP) operators
have been introduced as a means of constructing numerical methods that are arbitrarily high-order,
conservative, and provably stable. One advantage of the GSBP framework is that it can potentially
offer more freedom compared to other popular methods, for example, the discontinuous Galerkin
approach, as a result of not requiring basis functions. The purpose of the present work is to
develop a CFD solver to investigate novel computationally efficient high-order GSBP operators with
respect to their accuracy and efficiency in the numerical solution of the compressible Navier-Stokes
equations. Presently, the University of Toronto Computational Aerodynamics Group employs a
parallel implicit Newton-Krylov flow solver called Diablo, which uses classical summation-by-parts
operators in combination with simultaneous approximation terms to solve the compressible
Navier-Stokes equations on multi-block structured grids. The current flow solver will be extended
using existing and newly constructed GSBP operators; and an extensive sequence of test cases will
be performed to verify the efficiency of the constructed operators. This work is part of a larger
research program focused on the multi-disciplinary high-fidelity design and optimization of aircraft
using novel CFD algorithms, motivated by the need to reduce fuel consumption and emissions.
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Background

Motivation

• Using numerical methods to solve problems in fluid dynamics is computationally expensive

• High-order methods can provide higher accuracy at a lower computational cost compared to
low-order methods

• The potential for high-order methods to enable the construction of efficient algorithms
motivates their further development

Definition
Summation-by-parts (SBP) operator for the first derivative: A matrix operator , Dξ ∈ RN×N , is an

SBP operator that approximates the derivative ∂
∂ξ , on the nodal distribution ξ = [ξL, ξR ], of

degree p if [1]

1. Dξξ
k = H−1

ξ Qξξ
k = H−1

ξ

(
Sξ + 1

2 Eξ
)
ξk = kξk−1, k = 0, 1, . . . , p;

2. Hξ, the norm matrix, is symmetric and positive definite;

3. Eξ = ET
ξ , Sξ = −ST

ξ , therefore, Qξ + QT
ξ = Eξ; and

4.
(
ξi
)T

Eξξ
j = ξi+j

R − ξi+j
L , i, j = 0, 1, . . . , p.

To impose boundary conditions using simultaneous approximation terms, it is useful to construct
Eξ in the following manner:

Eξ = tξR
tTξR
− tξL

tTξL
, where tTξL

ξ
k = ξ

k
L , tTξR

ξ
k = ξ

k
R , k = 0, 1, . . . , p.

[1] D.C. Del Rey Fernández, P.D. Boom, and D.W. Zingg.
A Generalized Framework for Nodal First Derivative Summation-By-Parts Operators.
Journal of Computational Physics, 266:214–239, 2014.
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Traditional and Element-Type Finite-Difference Operators

Traditional (or block) operator example

• Repeated interior point operator

• Uniform nodal distribution

• Boundary nodes included

For diagonal Hξ, the classical degree one SBP
operator is given by

Dξ =
1

2∆ξ


−2 2
−1 0 1

. . .
. . .

. . .

−1 0 1
−2 2

 .

Projection operators for matrix derivative oper-
ators that include boundary nodes:

tξL
= [1, 0, 0, . . . , 0]T

tξR
= [0, 0, . . . , 0, 1]T

Element-type operator example
Legendre-Gauss quadrature nodes: do not in-
clude boundary nodes and are found by solving
Pn = 0, where Pn is the nth Legendre polyno-
mial and is given by (ξ ∈ [−1, 1])

Pn(ξ) =
1

2n

n∑
k=0

(n

k

)2
(ξ − 1)n−k (ξ + 1)k

.

A degree two element-type SBP operator con-
structed on the Legendre-Gauss quadrature
nodes ξ = [−

√
15/5, 0,

√
15/5]T is given by

Dξ =

 − 1
2

√
15 2

3

√
15 − 1

6

√
15

− 1
6

√
15 0 1

6

√
15

1
6

√
15 − 2

3

√
15 1

2

√
15

 .
Projection operators:

tξL
= [(5 +

√
15)/6,−2/3, (5−

√
15)/6]T

tξR
= [(5−

√
15)/6,−2/3, (5 +

√
15)/6]T

• GSBP operators can be derived using a variety of nodal distributions including the following
nodal distributions: Legendre-Gauss-Lobatto (LGL), Legendre-Gauss (LG),
Hybrid-Gauss-Trapezoidal-Lobatto (HGTL), Hybrid-Gauss-Trapezoidal (HGT).

D. Craig Penner 3



Subsonic Converging-Diverging Nozzle

• Quasi-one-dimensional Euler equations

• Steady solution

Problem summary

• Element-type operators

Legendre-Gauss (p = 3)
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• For the classical operators
(CSBP), the dense norm version
converges at a higher rate
compared to the diagonal norm
version

• This is because, while both
versions have interior operators
of order 2p, the boundary
operators decrease to orders p
and 2p − 1 for the diagonal and
dense norm cases, respectively

Classical
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Vortex Transport by Uniform Flow

• Two-dimensional Euler
equations

• Unsteady solution

• Fourth-order
Runge-Kutta time
marching

• Mach = 0.5, degree = 2

All operators achieve at least approximately p + 1 convergence

Operator CSBPE LGL LG HGTLE HGTE

Convergence 3.3906 3.4740 2.8031 3.4827 3.8556

Note: The subscript E denotes element-type refinement
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Conclusion: Non-uniform nodal distributions can potentially lead to more efficient operators

Future Work

• Artificial dissipation - not known how existing models apply to generalized SBP operators

• High-order meshing - high-order approximation of curved geometries required to get high-order accuracy

• Preconditioning - required to efficiently solve the linear system of equations that arises at each time step

• Flexibility of GSBP approach - exploit to develop novel operators with optimized efficiency
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