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ABSTRACT
The discretization of partial differential equations coming from different complex physical problems often involves solving large sparse linear
systems of equations with a great number of unknowns. These systems can be solved either with direct or with iterative methods. Iterative solvers
are often the ones preferred, as they are cheaper in terms of computer storage and CPU-time, but at the same time they are less robust than direct
methods and often converge slowly to the desired solution. To cope with this problem, equivalent preconditioned systems can be solved instead of
the original one. Finding a good preconditioner for solving sparse linear systems of equations is not an easy task and several aspects have to be taken
into account. The values of the sparse matrix highly depend on the physics of the problem, depending on the problem we have, different
patterns or dependencies in the same matrix can be observed. Adapting the preconditioner to the physics of the problem and detecting different
behaviours, looking at the values of a sparse matrix can improve convergence in a simple way.

INTRODUCTION

Numerical modeling can help to understand better and predict
the behaviour of certain problems such as fluid dynamics, heat
transfer or solid mechanics in physics and engineering. In many
cases these problems require the solution of complex PDE’s which
have to be discretized and solved numerically to obtain good
approximations of real life solutions.

The resulting matrix obtained highly depends on the physical phe-
nomena studied in each case this is the reason why before con-
sidering any numerical method to solve PDE’s it is important to
understand the physics that is behind.

Physical Phenomena

Taking the Advection Diffusion (A-D) Equation with k =

constant three behaviours can be observed:
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Limiting behaviours of the A-D equation can easily be seen con-
sidering its non-dimensional form:
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Limiting behaviours in the A-D:

• Hyperbolic behaviour:
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Numerical Treatment

• Discretization of conitnuum equations of physics (Finite El-
ement, Finite Diference, Finite Volume) leads us to sparse
linear systems of equations (SLSE) Ax = b ⇒ Few matrix
entries of A differ from zero.

• Solution to SLE’s can be done using:

⇒


Direct Methods⇒

{
Computationally Expensive
Robust

Iterative Methods⇒

{
Computationally Cheaper
Less robust than direct methods

PRECONDITIONING

To improve the convergence of iterative methods, equivalent pre-
conditioned systems can be solved instead of the original one, this
means multiplying the system by a matrix called preconditioner,
which has part of the information contained in the original matrix.

M−1Ax = M−1b⇒ Left Preconditioning

AM−1Mx = b ⇒ Right Preconditioning

TYPES OF PRECONDITIONERS

• ‘Brute Force Methods’⇒Multigrid, Domain Decomposition
Methods etc.

- Expensive

• ‘Simple Methods’⇒ Jacobi, Gauss-Seidel, Linelet etc.

- Cheap

- Can be adapted to the physics of the problem⇒
LOCAL PRECONDITIONING

Local Preconditioners

Nodal reordering according with the physics of the problem in
each case.

• Anisotropy Linelet

– Solving Poisson’s equation ⇒ ∇2u = f in an
anisotropic mesh (ie. Boundary layer problem)

– Dominant terms perpendicular direction to the wall⇒
A linelet is a bunch of nodes in that direction

– The matrix tends to be tri-diagonal

Figure 1: Nodal Renumbering in Anisotropy Linelet

• Streamline Linelet ⇒ Numbering the mesh nodes in the
flow direction, useful in convection dominated flows ie. ve-
locity is such that v = (vx, 0)

Figure 2: Random mesh numbering.

Figure 3: Mesh numbering along flow direction

Resultant matrices before and after nodal reordering:

Figure 4: Left: Resultant matrix from random numbering. Right: Resul-
tant matrix numbered along flow direction.

The resultant matrix obtained after renumbering, suggests that
using a Gauss Seidel preconditioner could be a good option, as
in this particular case it will converge in just one iteration.
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PARALLELIZATION STRATEGY

Figure 5: Mesh Partitioned into 3 subdomains

• Pure MPI, no multithreaded or hybrid approaches such as
OpenMP or MPI+OpenMP

• Applied to the INTERIOR nodes of each subdomain

• In the INTERFACE NODES⇒ JACOBI preconditioner

RESULTS

Anisotropy Linelet Preconditioner

Pressure equation for turbulent heat transfer in a channel and
nasal cavity:

Figure 6: Convergence curves for the Anisotropy Linelet preconditioner

Streamline Linelet Preconditioner

Heat Convection 3D:

• Stationary with an initial velocity in the x, y and z directions

• 3D + 559000 elements

Figure 7: Streamlines after numbering
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Figure 8: Convergence and time curves for Streamline Linelet preconditioner
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