

Massively parallelizable lattice Boltzmann method with regularized boundary conditions

Ismael Perez

Department of Biomedical Engineering, Duke University

PI: Amanda Randles

Email: <u>ismael.perez@duke.edu</u>

IHPCSS 2017

June 25-30 2017

Lattice Boltzmann method

- Harvey is a massively parallel hemodynamics solver, based on the lattice Boltzmann method [1].
- Mesoscopic method that models fluid as particle distribution functions.
- Algorithm • Collision: particles collide a each lattice node

 - Steaming: particles move according to discrete velocities
- Works well with complex geometries and scales well on massively parallel systems [1].

[1] Randles et al., Supercomputing 2015, 2015

Regularized Boundary Conditions

- Analytical solution for the set of linear equations for both Dirichlet and Neumann boundary conditions
- Recognized different types of boundary's during the preprocessing and encoded
 - Concave faces, edges, and corners
 - Convex edges and corners
 - Inlets and outlets

89,480,671

 $O = \{i \| f_i \text{ is an outgoing distribution} \},\$

Results: Modified lid-driven cavity flow, flow around the sphere and scaling results

Maximum Memory (MB)

Core Count	Regularized BCs	Bounce Back
16	94.98	91.01
128	13.99	13.41

Future work

- Flow around the sphere
 - Fix the numerical errors
 - Simulations will require the smallest resolution possible in Harvey to model the vortex formation and shedding
 - Continue to optimize implementation of regularized boundary conditions

Acknowledgments

- This material is based upon work supported by the National Science Foundation Graduate Research Fellowship Program under Grant No. 1644868.
- Randles Laboratory, Duke University: Daniel Puleri, John Gounley, Luiz Hegele, Amanda Randles

