Forecasting an Origin-Destination (OD) Distribution

Image of OD distribution

OD matrix (distribution)

	Zone 1	Zone 2	Zone 3	Sum
Zone 1	X ₁₁	X ₁₂	X ₁₃	O ₁
Zone 2	X ₂₁	X ₂₂	X ₂₃	O ₂
Zone 3	X ₃₁	X ₃₂	X ₃₃	O ₃
sum	D ₁	D ₂	D ₃	

Approach : a set of OD matrix

Previous studies obtain *"one"* OD matrix which has the highest likelihood and utilize the OD matrix for road planning.

I try to obtain a set of OD matrix which show a distribution of OD matrix.

- Only one estimated OD matrix cannot correspond to a real one.
- A set of calculated OD matrices can contain a real one.
- Apply a Monte Carlo sampling and Get a distribution of OD matrix.

Destination choice & Sampling

• Individual at zone *i* choose their destination *j* according to:

$$\sum_{\text{probability}}^{\text{Destination choice}} p_{i \to j} = \frac{\exp(G_j + \nu_{i \to j} + c_{i \to j})}{\sum_{\forall j} \exp(G_j + \nu_{i \to j} + c_{i \to j})}$$

 G_j : observed utility (attractiveness of destination j) $c_{i \rightarrow j}$: travel cost $v_{i \rightarrow j}$: unobserved spatial variation and given by normal distribution

• Total departure volume and probability $p_{i \rightarrow j}$ give $X_{i \rightarrow j}$

[Application : Monte Calro method, Alias method]

• One OD matrix is obtained by this process in all zones and I apply iterative calculation to obtain many OD matrix

Convergence process

- Attractiveness G_i and travel cost $c_{i \rightarrow j}$ are related to a OD matrix
- Need a convergence of G_j , $c_{i \rightarrow j}$ and $X_{i \rightarrow j}$

• To obtain G_i , I need to solve non-linear simultaneous equations

$$f_j(\boldsymbol{G}) = D_j - \sum_i E[X_{ij}(\boldsymbol{G})], \forall j$$

[Application : quasi-Newton method, numerical differentiation]

Travel cost (user equilibrium approach)

Equilibrium state (Wardrop's first principle \cong Nash equilibrium) :

- Drivers should prefer a fastest route
- All drivers successfully choose shortest routes for them in a final situation

Traffic assignment method (Franc-Wolfe method)

- Shortest path serach
- Line search (all-or-nothing approach)

Link: 40,003 Node: 13,389 OD: 18,503,872