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Data Assimilation

Simulation
xt+1 = f (xt)

We cannot get true initial
condition
Sensitivity to initial state

Observation
yt = Hxt + v
Observation of system is
limited and noisy

Data Assimilation
Numerical Simulation ⊕ Bayesian estimation

Dynamics of uncertainty p(xt)

Infinite dimensional dynamics
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Kalman Filter: Parametric approach

Gaussian Assumption

p(xt |yt−1, · · · ) = N (b x̄t ,
bPt),

p(xt |yt , · · · ) = N (ax̄t ,
aPt)

Dynamics of Gaussian PDF

b x̄t+1 = At
ax̄t

ax̄t =
ax̄t + Kt(y − Hbxt)

bPt+1 = At
aPtAT

t
aPt = (I − KtH)bPt

Advantage
Finite dimensional
Avoid curse of
dimensionality

Disadvantage
Really Gaussian
assumption works?
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Non-Gaussianity

quasi-Parametric Approach
Ensemble Kalman filter
Variational Bayes

Non-Parametric Approach
Particle filter
Markov-chain
Monte-Carlo (MCMC)
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