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N
Data Assimilation

Simulation Observation
@ X1 = f(x) @ y; = Hx; + v
@ We cannot get true initial @ Observation of system is
condition limited and noisy
@ Sensitivity to initial state )

Data Assimilation
Numerical Simulation ¢ Bayesian estimation
@ Dynamics of uncertainty p(x;)

@ Infinite dimensional dynamics
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|
Kalman Filter: Parametric approach

Gaussian Assumption

P(Xt|}’t—17 t ) - N(b)_(tv th)7

., Advantage
p(xelye, ) = N(°%¢,° Pt

@ Finite dimensional

Dynamics of Gaussian PDF @ Avoid curse of
dimensionality

b)_<t+1 = AX
% =% + Ki(y — bet) Disadvantage
PPy = APAT @ Really G.aussian
R b assumption works?
Pt — (l - KtH) Pt
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Non-Gaussianity
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X

quasi-Parametric Approach
@ Ensemble Kalman filter

@ Variational Bayes

Non-Parametric Approach
o Particle filter

@ Markov-chain
Monte-Carlo (MCMC)
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