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Background

• Complex dynamics in
biochemical signaling
networks
• Cancer as heterogeneous

disease with highly variable
treatment outcomes
• Large and complex datasets

to be analyzed

→ Goal: Model-based
prediction of patient
responses
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Data integration using ODE models & parameter inference

ModelM
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e.g. ProteinA + ProteinB
kr←−−−−→
kf

ProteinA:ProteinB

ẋ(t , θ, u = f (x(t , θ, u), θ, u), x(t0, θ, u) = x0(θ, u)
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→ Gradient-based optimization of likelihood p(D|M)
→ Objective function evaluation requires

potentially large number of costly model simulations



Scalable simulation and parameter estimation — parPE & AMICI

High performance computing for parameter estimation
• many large systems of ODEs
• non-convex optimization problem

Simulation: AMICI1

• Scalable simulation and sensitivity analysis using adjoint approach
• CVODES interface
• C++, Python, Matlab interface

https://github.com/ICB-DCM/AMICI/

Optimization: parPE2

• Distributed parallelization of model simulation
• Mini-batch and optimization and interfaces to batch optimizers
• C++ library

https://github.com/ICB-DCM/parPE/

https://github.com/ICB-DCM/AMICI/
https://github.com/ICB-DCM/parPE/


Parallelization & scaling

Parallel efficiency on SuperMUC phase2 Haswell nodes

~5000 simulation conditions, 25 optimizations



Application — CanPathPro 3 (http://canpathpro.eu/)

• Deep phenotyping of mice
• Data integration using mechanistic model
• Predictive modelling platform

→ In silico experiments:
optimal treatments, effect of mutations, ...

3CanPathPro in 2min: https://player.vimeo.com/video/312066145

http://canpathpro.eu/
https://player.vimeo.com/video/312066145
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