HelmholtzZentrum münchen

German Research Center for Environmental Health

Statistical inference for large-scale ordinary differential equation (ODE) models of cancer signaling

Dr. Daniel Weindl (dweindl)

IHPCSS19, Kobe, Japan, July 2019

Background

- Complex dynamics in biochemical signaling networks
- Cancer as heterogeneous disease with highly variable treatment outcomes
- Large and complex datasets to be analyzed
- → Goal: Model-based prediction of patient responses

Data integration using ODE models & parameter inference

$$\dot{x}(t,\theta,u=f(x(t,\theta,u),\theta,u), \quad x(t_0,\theta,u)=x_0(\theta,u)$$

 $\begin{array}{l} \rightarrow \mbox{ Gradient-based optimization of likelihood } p(\mathcal{D}|\mathcal{M}) \\ \rightarrow \mbox{ Objective function evaluation requires} \\ \mbox{ potentially large number of costly model simulations} \end{array}$

HelmholtzZentrum münchen German Research Center for Environmental Health

Scalable simulation and parameter estimation — parPE & AMICI

High performance computing for parameter estimation

- many large systems of ODEs
- non-convex optimization problem

Simulation: AMICI1

- · Scalable simulation and sensitivity analysis using adjoint approach
- CVODES interface
- C++, Python, Matlab interface

https://github.com/ICB-DCM/AMICI/

Optimization: parPE²

- Distributed parallelization of model simulation
- Mini-batch and optimization and interfaces to batch optimizers
- C++ library

https://github.com/ICB-DCM/parPE/

Parallelization & scaling

~5000 simulation conditions, 25 optimizations

Application — CanPathPro³ (http://canpathpro.eu/)

- Deep phenotyping of mice
- Data integration using mechanistic model
- Predictive modelling platform
- → In silico experiments: optimal treatments, effect of mutations, ...

³CanPathPro in 2min: https://player.vimeo.com/video/312066145

HelmholtzZentrum münchen

German Research Center for Environmental Health

Acknowledgements

This work was supported by the European Union's Horizon 2020 research and innovation program (CanPathPro; Grant No. 686282).

Computer resources for this project have been provided by the Gauss Centre for Supercomputing / Leibniz Supercomputing Centre under grant pr62li.

