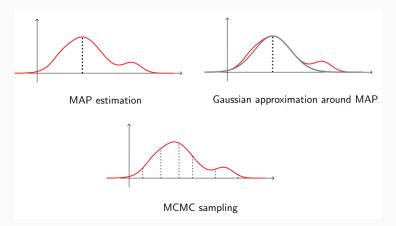

Automated Bayesian Inference for PDE-constrained Inverse Problems

Ivan Yashchuk VTT Technical Research Centre of Finland, Materials Modeling group Aalto University, Probabilistic Machine Learning group July 9, 2019

Model + Simulation + Data



A generative physical model: $X \sim \mathcal{F}_{\theta}$, being \mathcal{F}_{θ} a PDE system

 $F(\boldsymbol{X};\boldsymbol{\theta})=0$

Having observed some data y define a likelihood $p(y|X, \theta)$ and combine with a prior distribution $p(\theta)$ to obtain the posterior

$$p(\theta|\mathbf{y}) = \frac{p(\mathbf{y}|\mathbf{X}, \theta)p(\theta)}{\int p(\mathbf{y}|\mathbf{X}, \theta)p(\theta) \, d\theta}$$

Approximate methods: MCMC (lots of variants), Variational method (lots of variants), Laplace approximation, neural nets, sparse grid, etc.

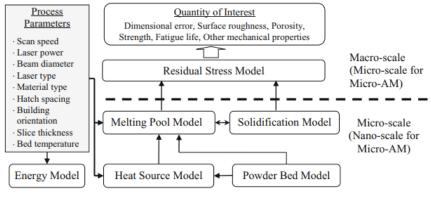
Because of ...

high-dimensionality of the target we need to utilize *derivative* information

repeated PDE solution we need to utilize the resources efficiently, use advanced solvers

not everyone can do this we need to lower the barriers of skills needed by providing the tools

My PhD Components


- Automatic differentiation for PDE systems Automated generation of adjoint problems and efficient integration of the adjoint solution into AD framework
- Bayesian analysis for inverse problems Assessing prediction reliability and accuracy guarantees
- Case studies

Focus on Additive Manufacturing Large-scale multiphysics simulations

• Software development

Additive Manufacturing

Model	Methods	Inputs	Outputs
Heat source	Gaussian distribution for horizontal intensity Direct measurement Trajectory tracking of photons Monte Carlo simulation (MCS)	Material type Powder distribution Beam diameter Laser power Powder shape Thermal diffusivity Scan speed	Absorbed energy Absorption coefficients of materials Vertical absorption distribution
Powder bed	 Raindrop model Discrete element method (DEM) Nonlinear Hertzian contact model 	Sliding friction coefficient Rolling friction coefficient Young's modulus Radius distribution Hamaker constant Damping coefficient Restitution coefficient	Packing density Radial distribution function (RDF) Porosity of the powder bed
Melting pool	Thermal model for melting Lattice Boltzmann (LB) approach (2D and 3D) Extended LB approach Computational fluid dynamics (CFD) by including heat transfer, melting, and Marangoni force	 Scan speed Laser power Particle radial distribution Absorption coefficient Melting temperature Thermal diffusivity Layer thickness Beam diameter 	Melt pool width Melt pool shape Diffusion efficiency Cross-sectional area Length-to-depth ratio Porosity and layer bonding defects Thermal boundary conditions Surface roughness
Solidification	 Microscopic cellular automaton (CA) coupled with Macroscopic finite element (FE) approach Phase field (PF) approach 	Cooling rate Thermal history Material properties	Grain size Thermo-mechanical properties of materials Metallurgical properties
Residual stress	Couple finite volume (FV) with FE approach Thermal-mechanical FE models	Thermal boundary condition Mechanical boundary condition Material properties	Residual stress Shrinkage Deformation
Adapted from Zhen Hu, 2017			Fatigue life

Source: Zhen Hu, 2017