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Automatic Parallelization:  
Multicore Systems
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ROOT EXECUTION SCOPE

ES_foriter (Figure 2.18, lines 1-46)

ES_fori,j (Figure 2.18, lines 2-4)

ES_fori,while (Figure 2.18, lines 5-27)

ES_fori,j (Figure  2.18, lines 29-31)

ES_fori,j (Figure  2.18, lines 32-37)

ES_fori,j (Figure  2.18, lines 38-40)

ES_fori,j (Figure  2.18, lines 41-44)
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Automatic Parallelization:  
Manycore Systems

GPU Programming Features addressed by our Automatic Technique

1 Threadification
2 Thread grouping: warps
3 Minimization of CPU-GPU data transfers
4 Coalescing
5 Maximization of the usage of registers and shared 

memory6 Divergency
7 Occupancy
8 Threads per block
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ce 3.3 Chains of Recurrences 69

Our technique will use these OpenHMPP mechanisms to automatically gen-
erate efficient GPU code.

3.3 Chains of Recurrences

Chains of recurrences (from now on, chrecs) are an algebraic formalism to repre-
sent closed-form functions which have been successfully used to expedite func-
tion evaluation at a number of points in a regular interval [18].

Definition 3.3.1. Given a constant f 2 Z, a function g : N0 ! Z, and the operator
+, the chrec f = {f,+, g} is defined as a function f : N0 ! Z such that:

{f,+, g}(i) = f +
i�1

Â
j=0

g(j)

Hence, the chrecs can be used for representing the iterations of a loop. For
example, the loop index of fori in Figure 3.4 takes integer values in the interval
[0, sizex � 1]. The chrec {0,+, 1} provides a closed-form function to compute the
value of i at each fori iteration.

The chrecs, which are given by the KIR1, have demonstrated to be a powerful
representation of the complex loops and the memory accesses that appear in full-
scale real applications [13]. In the same example of Figure 3.4, the memory access
pattern i in the first dimension of input[i][j][k] (see line 10 of Figure 3.4) can be
represented with the chrec {0,+, 1}.

The algebraic properties of chrecs provide rules for carrying out arithmetic
operations with them [18]. For instance, the addition of a chrec and a constant c is
given by {f,+, g}+ c = {f + c,+, g}. This rule enables the representation of the
access pattern in the first dimension of input[i � 1][j][k] (see line 12 of Figure 3.4)
as {0,+, 1} � 1 = {�1,+, 1}. Hence, chrecs can be computed to completely
describe the access pattern for n-dimensional arrays.

1Note that, for the sake of simplicity, Chapter 2 used triplet notation for the analysis of the
values produced/used throughout the execution of diKernels. Chrecs represent the same and
more information, and they provide a formal algebra of operations, thus chrecs are the formalism
chosen for our compiler framework.

• Useful for representing the iterations of a loop and array access patterns
• We instantiate (particularize) them for each GPU thread 

-
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Trace-based Reconstruction 
of Affine Codes

1. for (i = 0; i <= 29; i++) { 
2.   for (j = 0; j <= 29-i; j++) { 
3.     for (k = 0; k < i; k++) { 
4.       … A[i][k] … 
5.     } 
6.   } 
7. }

2 Problem Formulation

A program memory trace contains all the memory addresses issued by its entire execution,
including multiple loop nests and non-loop sections. In this work, it is assumed that each
entry in the trace is labeled using an identifier of the instruction issuing the access (e.g.,
its memory address as done by Intel Pin). Hence, the address stream generated by each
instruction can be analyzed separately.

The algorithm focuses on the reconstruction of each individual reference enclosed in
large regular loops, with linear static control parts that depend only on the loop index vari-
ables and loop independent constants through affine bounds and subscripts. These types of
loops are the main target of the polyhedral model and can be written as:

DO i1 = 0, u1(�!ı )
...

DO in = 0, un(�!ı )
V [f1(�!ı )] . . . [fm(�!ı )]

where {uj, 0 < j  n} are affine functions, {fd(i1, . . . , in), 0 < d  m} is the set of affine func-
tions that converts a given point in the iteration space of the loop nest to a point in the data
space of V , and �!ı k = {ik1, . . . , ikn}T is a column vector which encodes the state of each itera-
tion variable for the kth execution of the loop nest. The complete access V [f1(�!ı )] . . . [fm(�!ı )]
is abbreviated by V (�!ı ). Since fd are affine, the access can be rewritten as:

V [f1(�!ı )] . . . [fm(�!ı )] = V [c0 + i1c1 + . . .+ incn] (1)

where c0 is a constant stride and each {cj, 0 < j  n} is the coefficient of the loop index ij .
During the execution of the loop nest, the access to V will orderly issue the addresses

corresponding to V (�!ı 1), V (�!ı 2), etc. Note that, using Eq. (1), the stride between two con-
secutive accesses �k = V (�!ı k+1) � V (�!ı k) can be expressed as a linear combination of the
coefficients of the loop indices. This is the basis of our reconstruction approach.

3 Reconstruction Method

The proposed technique is essentially a guided exploration of a tree-like potential solution
space driven by the access strides, in which level k contains all possible loops with trip
count equal to k: from a 1-level nest iterating from 0 to (k � 1), to a k-level nest with a
single iteration per level. Its root is a trivial loop that generates the first two accesses in the
trace. The exploration engine incorporates one access to the reconstructed loop in each step,
descending one level into the tree, until it finds a solution for the entire trace or determines
that no affine loop is capable of generating the observed sequence of accesses. Each step of
the process is conceptually depicted in Fig. 1. Starting from the kth iteration vector �!ı k =
{ik1, . . . , ikn} there are (2n+1) different vectors �!ı k+1 that are considered as candidates for the
(k + 1)th iteration vector. The n alternatives on the left side are obtained using an operation
+(j,�!ı ), which increases index ij by one and resets to zero all inner indices. The (n + 1)
alternatives on the right are obtained by applying an operation f(j,�!ı ), which inserts a new
loop at nesting level (j + 1).
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✦ Hardware and software prefetching

✦ Data placement

✦ Dependence analysis

✦ Design of embedded memories

✦ Trace compression

[3, 5, 7]

[4, 0, 0]

[3, 6, 0]

[3, 5, 8]

[1, 0, 0, 0]

[3, 1, 0, 0]

[3, 5, 7, 1]

[3, 5, 1, 0]

1 #define N 32

2 double p[N], A[N][N];

3 for(i = 0; i < N; ++i) {
4 x = A[i][i];
5 for(j = 0; j <= i-1; ++j)
6 x = x - A[i][j] * A[i][j];
7 p[i] = 1.0 / sqrt(x);
8 for(j = i+1; j < N; ++j) {
9 x = A[i][j];

10 for(k = 0; k <= i-1; ++k)

11 x = x - A[j][k] * A[i][k];
12 A[j][i] = x * p[i];
13 }
14 }

(a) Source code of the cholesky application.

1 0x1e2d140
2 0x1e2d140

...

30 0x1e2d140
31 0x1e2d240
32 0x1e2d248
33 0x1e2d240
34 0x1e2d248

...

88 0x1e2d248
89 0x1e2d340
90 0x1e2d348
91 0x1e2d350
92 0x1e2d340
93 0x1e2d348
94 0x1e2d350

...

(b) Excerpt of the memory trace generated by
the access A[i][k] (see line 11 of Fig. 2a).

(c) Reconstruction times (upper axis) and trace sizes
(lower axis). Axes are logarithmic. Since the subtraces
are independent, they can be reconstructed in paral-
lel achieving an average speedup of 5.6x. Each execu-
tion was performed on an Intel Xeon E5-2660 Sandy
Bridge 2.20 Ghz node, with 64 GB of RAM.

Figure 2: Experimental evaluation with the PolyBench/C 3.2 suite [Pou].
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Future Project: Breaking the Traditional Analysis of 
the Results of Computational Simulations

• It typically starts after the simulation has finished: I/O 
subsystem evolves slowly, so it is a new bottleneck 

• We want to use Apache Flink, a distributed streaming 
dataflow engine, to process the data from the simulation 
in the same cluster. Tested with molecular dynamics! 

• Automatic real-time resource scaling platform for Big Data

ISAV ’18, November 12, 2018, Dallas, TX, USA Henrique C. Zanúz, Bruno Ra�in, Omar A. Mures, and Emilio J. Padrón

by computational biologists. VMD has been extended to support in
situ rendering [19].

Several in situ and in transit frameworks report experiments
with MD simulations to demonstrate their scaling abilities. They
all rely on HPC based approaches, mainly MPI+X, used in di�erent
ways [8–10, 22, 23]. To our knowledge these approaches mainly led
to research prototypes and have not yet been adopted by scientists.

Computational biologists have considered the map/reduce model
as an alternative to traditional HPC parallelization approaches to
speed up the post-hoc MD trajectory analysis. Himach [20] was
the �rst MD analysis framework to provide parallel execution ca-
pabilities inspired by Google’s Map-Reduce. The authors initially
considered Hadoop as a target, but due to its poor performance
they developed a dedicated map/reduce framework based on MPI,
Python and using VMD for the analysis kernels. Himach has a
run-time responsible for assigning the tasks to the processors, co-
ordinating the parallel I/O requests, storing and managing inter-
mediate values (temporary key-value pairs) and orchestrating the
data exchange between processes. Himach focuses on a temporal
parallelization where each key-value is one simulation timestep
with all atom positions. It shows a reasonable good performance
and scalability, almost linearly until 32 MPI processes but degrading
from that point due to I/O and communications.

On [17], the authors compare three general purpose task-parallel
frameworks, Spark, Dask and RADICAL-Pilot, with respect to their
ability to support post-hoc MD analytics on HPC environments.
They also assess them in comparison to classical HPC MPI ap-
proaches. Their experiments show that Spark outperforms Dask
when it comes to communication intensive tasks and iterative al-
gorithms, due to the in-memory RDDs. Dask’s low and high level
APIs prove to be more versatile than Spark, although both have
showed some limitations, requiring work-arounds to implement the
analytics. Radical-Pilot proved to be more useful for coarse-grained
task-level parallelism and when it is necessary to integrate other
existing HPC analytics frameworks (such as MDAnalysis). Even
though none of them outperformed their MPI counterpart, their
easier programming paradigm and not so big performance gap still
creates a strong case for using them for MD analytics.

If many tools have extended the map/reduce model for stream
processing, very few works have attempted to combine this model
with in situ analytics for large parallel simulations. The SMART [21]
in situ framework proposes to rely on the map/reduce model to
de�ne in situ analysis. Implemented on top of MPI and OpenMP
it outperforms Spark, but lacks features like support for in transit
processing or fault tolerance. DataSpace [7] is not a map/reduce
framework but adopts the key/value storage concept to automati-
cally index data produced by parallel simulations and store them
in the memory of in transit nodes. Analytics query this in-memory
database to get the needed data. DataSpace relies on MPI.

Many stream processing frameworks designed for internet and
IoT applications exist, Spark, Flink and Storm being the most visible
ones. For sake of conciseness refer to surveys like [5] for compara-
tive studies.

Figure 1: Diagram of the proposed framework deployed on
8 nodes: the MD simulation (CoMD) running in 4 nodes;
2 nodes executing the on-line analytics with Flink, receiv-
ing the data stream through ZeroMQ; and other 2 nodes in
charge of storing data (raw data from the simulation and re-
sults from the analytics) in a distributed database (HBase).

3 IN TRANSIT PARALLEL ANALYTICS
FRAMEWORK FOR MD SIMULATIONS

The architecture of the proposed framework connects the CoMD
simulation parallelized with MPI to Flink worker nodes using Ze-
roMQ. Flink executes the analysis scripts in parallel and in-memory
as soon as a new timestep is received, then injecting results to the
HBase distributed database, that takes care of storing the results
using its local disks (see an example of an 8 nodes con�guration
in Figure 1). An additional node is used to run both the Flink job
manager and the HBase master.

3.1 Parallel Simulation
CoMD [11] is a mini-app for MD simulations, i.e. a simpli�ed version
of an actual MD application, sharing the same features and patterns
in terms of operations, workload and work balance. We use the MPI
version of CoMD, where each MPI updates the states of a �xed and
di�erent set of atoms at each timestep.

3.2 Distributed Stream Processing
Apache Flink [4] is an open source analytics engine supporting both
stream and batch processing. Flink is a distributed, high-performing,
highly availably and fault-tolerant framework. Flink is the result of
the Stratosphere project [2], an open source platform for massively
parallel Big Data analytics. It includes various level of optimizations
like Parallelization Contracts (PACTs) [3]. To our knowledge Strato-
sphere/Flink has never been used for analyzing MD trajectories.

Flink stream processing model relies on the data�ow model as
de�ned in [1]. It enables to continuously trigger the execution of
map/reduce-like scripts [6] on windows of data regularly extracted
from data streams. If the window operates on keyed data, i.e. data
that are partitioned according to a key de�ned by the user, the
operations are executed in parallel.

A Flink script is transformed into a data�ow graph, taking into
account the parallelization opportunities supported by the di�erent
operators being used. At execution, one TaskManager in each Flink
worker node performs the operations over the input data. Each
TaskManager provides one task-slot per core in the node, usually
called sub-tasks. At speci�c points of the execution, the streams
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