OBJECTIVE

When there's a high-fidelity model and a cheap low-fidelity model available, we aim to develop a nonintrusive method to produce an accurate approximation of the high-fidelity solution with affordable online cost, particularly for nonlinear problems.

POD

Let $S_h = [u_h(z_1), u_h(z_2), \dots, u_h(z_P)]$ be a snapshot matrix for the high-fidelity model. Proper Orthogonal Decomposition (POD) is given by the singular value decomposition

$$S_h = U_h \Sigma_h$$

The first r columns of U_h are chosen to form the POD basis V_h of the reduced space \mathbb{V}_h and the POD coefficients are computed by a projection onto \mathbb{V}_h :

 $c_h(z) = V_h^\top u_h(z).$

The reduced solution is represented by

 $u_r(z) = V_h c_h(z).$

For traditional nonintrusive RB methods, the projection coefficients are obtained via interpolation over the parameter domain. However, this approach is not robust due to the strong nonlinearity [1].

BIFI-NN

To improve the approximation power, we propose to include features extracted from the low-fidelity model, besides the original parameter z [3].

Offline:

- 1. Sample a collection of parameters $\Gamma =$ $\{z_1, z_2, \ldots, z_M\} \subset I_z$. For each $z_j \in \Gamma$, run the high-fidelity model $u_h(z_i)$ and the low-fidelity model $u_l(z_j)$.
- 2. Compute the POD coefficients $c_l(z)$ and $c_h(z)$ for both fidelities by projection.
- 3. For i = 1, ..., r, train a network $\Phi_i(x; \theta)$ where the input is the combined feature $x = (c_l(z), z)$ and the output is the i^{th} component of $c_h(z)$.

Online:

- 1. Run the low-fidelity model $u_l(z^*)$ for the given z^*
- 2. Compute the low-fidelity POD coefficients $c_l(z^*)$ by projection.
- 3. For $i = 1, \ldots, r$, evaluate the pre-trained network Φ_i at the combined feature $x^* =$ $(c_l(z^*), z^*)$ to the approximation of i^{th} component of $c_h(z^*)$.
- 4. Construct the approximated high-fidelity solution.

Bifidelity Data-assisted Neural Networks In Nonintrusive Reduced-order Modeling

Chuan Lu, Xueyu Zhu chuan-lu@uiowa.edu, xueyu-zhu@uiowa.edu

A 2D NONLINEAR ELLIPTIC EQUATION

modeling. *submitted*, 2019.

