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OBJECTIVE A 2D NONLINEAR ELLIPTIC EQUATION

When there’s a high-fidelity model and a cheap low-fidelity model available, we aim to develop a non- Consider a parameterized 2D nonlinear elliptic equation with parameter u = (u1, uo) € [0.01, 10]%:
intrusive method to produce an accurate approximation ot the high-fidelity solution with affordable online

cost, particularly for nonlinear problems. —Au(x,y) + s(u(z,y); ) = 100sin(27x) sin(2wy), s(u;p) = ﬂ(eﬂzu — 1), (4)
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Let Sy = [up(21), un(22),...,un(zp)| be a snapshot matrix for the high-fidelity model. Proper Orthogonal

with a homogeneous Dirichlet boundary condition. The spatial domain is (z,y) € Q = (0,1)*. We use 135
P; elements to solve the low-fidelity model, and 2960 elements for the high-fidelity model.
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The reduced solution is represented by — A -~ MPOD-NN,r=10
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ur(2) = Vien(z2). (3) e
For traditional nonintrusive RB methods, the projection coefficients are obtained via interpolation over 100 200 400
the parameter domain. However, this approach is not robust due to the strong nonlinearity [1]. number of basis 7 size of training set [V
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To improve the approximation power, we propose to include features extracted from the low-fidelity model,

besides the original parameter z |3]. 0.5. = ] 107
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1. Sample a collection of parameters I' = PR S SR 1';““ 0.5 103
{z1,22,...,2m} C I,. For each z; € I, run the - 2 1
high-fidelity model uy(z;) and the low-fidelity )= - N
| z< NSO | 0.5
model u;(z;). | W k’i - oy 104
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for both fidelities by projection. NMEZ; :Zz;i)‘%.f’%v !
3. For.z' — 170- s T train. a network ®;(z; ¢) where c;(2) < R ;QA\. e The proposed BiFi-NN method is a nonintrusive method.
the input is the combined feature z = (c(2), 2) e, (2) O e It is able to produce a reasonable good approximation of the high-fidelity solution.

he output is the ¢*" t of .
and the output is the 7" component of ¢ () e The online cost of BiFi-NN mainly depends on the low-fidelity model.

Online:
Remark: We also provides a modified POD-

NN structure as a baseline method |2].

1. Run the low-fidelity model u;(z*) for the given
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