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In modern dynamical system modelling, finding coordinate
transformation for representing highly non-linear dynamics in terms of
approximate linear dynamics has been of crucial importance for
enabling non-linear control, estimation, and prediction. Recently
developed interest in Koopman operator theory has shown that its
eigenfunctions can provide such coordinates that intrinsically linearize
the global dynamics But finding and representation of such
eigenfunctions have been challenging. The present work leverages
deep learning methods, specifically Recurrent Neural Networks
(RNNs) for discovering the Koopman eigenfunction representations
and exploit RNNs ability to model temporal dependencies, to allow
multi-step evolution of the dynamics, as long forecasting for such
systems still remains a major challenge. Current work is an
incremental work on the network architecture, which is interpretable in
terms of Koopman theory and parsimonious, allowing augmentation to
the lacking interpretability to deep learning architectures, while
capturing the fewest meaningful eigenfunctions. Some other challenges
related to modelling such architectures are discussed in future work.

Koopman operator theory is a mathematical framework for evolving a
system on the observable functions of an infinite dimensional Hilbert
Space. Koopman operator is a linear operator which acts on these
system observables in the same way a flow-map of the system does,
evolving the observable of the system. The following figure gives a
more intuitive feeling of Koopman theory.
The main idea is to able to represent the observables of the systems in
terms of the eigenvectors of the Koopman Operator. But the find the
eigenvectors is a challenging task.
To better understand, think of fluid flow as an example with pressure
or vorticity being the system observable (function of state-space).

As this work is still in its early phase, the following figure shows
various loss as described in the ‘approach’. As it can be seen here, the
network is still an underfit, even though the architecture was trained
75% of data size used by previous research for the non-linear pendulum
case, showing promise for less data-intensive architecture. This was
trained on a P100 GPU on a test node of Reedbush supercoumpter at
University of Tokyo. Work is in progress to parallelly run multiple
instances for hyperparameter searching.

In regards with the current plan:
• Comparison with current data-driven approaches for dynamics 

evolution.
• Initial State Initializer for RNN layers

Further advancements:
• Bifurcation parameter estimation
• Automatic detection of required eigenfunction
• Systems with higher complexity e.g. Turbulent flows
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The dynamical systems considered here consists of cases with discrete
and continuous eigenvalues for the Koopman eigenvectors , presented
by dynamics in the first and second figure (non-linear dynamics) from
the right. To evaluate the long range prediction capability of the
network, the classic Lorenz system has been considered.

The primary goal of this work is to enable longer-time forecasting of complex dynamical systems
while maintaining interpretability and the parsimony of the network. The present work builds upon the
network architecture proposed by Lusch et.al.
The first figure with ‘Prediction loss’ below represents the primary network architecture. Given to the
Koopman interpretability of the network, various ‘interpretable’ losses are computed during the
training, described in by the figures of ‘Autoencoder’ and ‘Linearization’ losses. 𝑥5 and 𝑦5 represent
the dynamics in the non-linear subspace and Koopman subspace respectively, where 𝑦5 is encoded
from 𝑥5, evolved using the Koopman operator to 𝑦5$/ and then decoded to 𝑥5$/.
The enabling thought for the current architecture is to implement ‘Long-Short Term Memory’ stacked
layers for the encoder-decoder layers, tackling the problem of high data-requirement and longer range
forecasting of the system. RNN networks have shows great promise for tasks pertaining to time-series
forecasting.

Prediction Loss: ||𝑥5$/ − 𝜙+/𝐾𝜙(𝑥)||

HPC Aspect
Given the large
hyperparmeter space of
the network, faster and
parallelized training is
crucial for obtaining
the best fit. Though the
current architecture is
written using
TensorFlow API, for
efficient utilization of
supercomputer
resources, packages
such as ‘Horovod’ and
‘mpi4py’ are being
explored for distributed
and simultaneous
training.
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