Finite-temperature Green's Function Methods for ab-initio Quantum Chemistry

Alicia Rae Welden
Department of Chemistry

Electrons interaction is a many-body problem.

There are <u>multiple</u> bodies present.
There are <u>interactions</u> between the bodies.

lectrons atom

Atoms in molecule

ī

We can't solve it **analytically** for real systems!

Strategies to deal with prohibitive computational cost

parallelism

new theories & algorithms

Chemical theories with lower scaling such as DFT, low order perturbation theories.

Taking advantage of matrix sparsity for less storage/operations

Density functional theory
Empirical parameters
Good scaling

Green's functions

Controllable accuracy
Reasonable scaling
Temperature-dependent

Green's functions are not new in quantum chemistry, they were just more cumbersome than wavefunction methods or density functional theory.

Advances in computing make Green's functions deserving of a resurgence.

My PhD work: Finite-temperature Green's function Methods for ab-initio Quantum Chemistry: Thermodynamics, Spectra, and Quantum Embedding

Second-Order perturbative Green's function

Spectra

Electronic Thermodynamics

Quantum embedding partitions the system into two parts.

System

"Important" part High-level method Strong correlations

Environment

"less important" part Low-level method Weak correlations

Hubbard model 2D