

EPIDEMIC SPREADING ON RANDOM LATTICES

NON-EQUILIBRIUM PHASE TRANSITIONS VS QUENCHED DISORDER

Manuel Schrauth

University of Würzburg - Institute for Theoretical Physics

IHPCSS 2018 Ostrava - 10.06.2018

Contact Process

Let's build a 1D toy model for **epidemic spreading**:

• Periodic chain

- Each site occupied by one individual, which is infected • or healthy o
- Two possible interactions:
 - Infection of a neighbour
 - Spontaneous self-recovery

- Parameter: Infection probability $p \in [0, 1]$
- Can be implement by standard Monte-Carlo techniques
- Not solved analytically so far, even in 1D

Phase Transition

Infection probability controls the evolution of the system

Critical point *p_c* separates **two phases**:

- $p < p_c$: Infection dies out (absorbing state)
- $p > p_c$: Infection spreads the whole system (active phase)
- $p = p_c$: Transition between survival and extinction

Exactly at the critical point various observables show power-law behaviour, e.g. number of infected particles scales as $N(t) \sim t^{\theta}$. θ is called a **critical exponent**.

Universality

Values of critical exponents are irrespective of any microscopic details, i.e. we can

Add more interactions

• In multi-D: Change the lattice geometry

This changes only the location of the critical point. The exponents remain the same!

 \rightarrow Universality class (here: Directed Percolation)

The directed percolation universality class comprises various different phenomena, e.g. transport in porous media, forest fires, certain chemical reactions, transition from laminar flow to turbulence or evolutionary dynamics

Disordered Lattices

Spatial disorder models, e.g.

- Geographical inhomogeneities (in epidemics)
- Defects in solids, amorphous materials (in solid state physics)

Current research questions:

Which universality classes are stable against which kinds of disorder? Is the phase transition changed? What are the criteria?

HPC aspects:

- Long simulation times (up to 10⁸ time steps) and large systems (up to 12.000² sites)
- Additionally: Average over **many** disorder realizations