
Systematic Generation of Optimized Codes of
Stencil Computation for HPC System with a

Hierarchical Structure
The University of Tokyo

Osamu Ishimura

1

Do you like making
DSL platforms from

scratch? 1

HPC System

Network
Topology

DSP

VPU

FPGA

APU

Non-
volatile
memory

GPU

SSD

Cache

Problem & Contribution

Problem
• Recent tendency of the complication of the structure of HPC system (GPU,

many-core processor, FPGA, DSP, etc.) makes it difficult to build efficient
applications.

• Domain-specific language (DSL) platform is a promising approach. However,
these platforms are not portable by themselves, and the difficulty of
development is just transferred to the lower layers.

Contribution
• Designed the programming model to separate program adaptations for

systems from program logic by corresponding hardware hierarchies and self-
similarity of region segmentation of stencil programs.

• Developed the program adapters and optimizers, which are modularized and
portable; on Aspect-Oriented Programming.

• It enables to separate platform developments and platform turning for
systems.

Aspect Oriented Programming

In AOP, Cross-cutting Concern in Objects in OOP is
extracted to Aspects
• In Joint-Point Model, Aspect has Pointcuts and
Advices.

• Pointcuts extract Joint-Points by Pattern Matchings
from the base program and weave the Advices.

3

Base Program

Pointcut: △“○”◇
Advice: ☆

Aspect
Pointcut: △“○”◇

Advice: ☆

Aspect
Apply

Base Program

Pointcut: △“○”◇
Advice: ☆

Aspect

Base Program

Weave

Structure of the Platform

Platform
• Annotation Library
• Memory Library
• Optimization Aspects
• Utility Aspects

Providers
• Parameter and Aspects

Setting for specific HPC
Systems

End-Users
• Serial Program Codes of

Their Applications

4

OA_MPI,
OA_OMP,

OA_Cache, ...

Optimization Aspects

Simple & Serial Program Code

weave

Adapted Program Code

PA_MPI,
PA_OMP,

PA_Cache, ...

Utility Aspects
Aspect

Settings

weave
Parameter
Settings

Annotation
Library

Memory
Library

Evaluation

5

1

10

100

1000

0 10 20 30 40 50 60 70

Ex
ec

ut
io

n
TI

m
e

(m
s)

The number of Nodes

MPI MPI+OpenMP
MPI+Cache MPI+OpenMP+Cache

0
5

10
15
20
25
30
35
40
45

0 1000 2000 3000 4000

Ti
m

e
/

1
Gr

id
 *

1
st

ep
 (n

s)

The number of nodes

Hand Written Optimized (262144)

Program Generated (262144)

Hand Written Optimized (147456)

Program Generated (147456)

Results
• Fig. 1 shows the weak scaling performance of the platform.

It indicates that our platform has a little size of overhead.
• Fig. 2 shows the strong scaling performance of the

platform. It indicates the platform has some performance
issue related to the OpenMP Layer.

Future work
• Generalize the programming model to programs with a

similarity

• Enhance the AOP compiler or change over to a macro-
system based compiler (Branch the process depends on
the data type or interface type and provide features to
know the logic of a function from aspects. (Naive AOP
implementation does not have these feature. It will enable
to adapt the system to a no layer-by-layer hierarchy.)

• Change the grain size of kernel to adapt to GPU and SIMD
architecture.

Fig. 1: Comparison between Hand Written
and Program Generated on Oakforest-PACS

Fig 2: Comparison among Aspect Combinations
on Reedbush-U

	 Systematic Generation of Optimized Codes of Stencil Computation for HPC System with a Hierarchical Structure
	Problem & Contribution
	Aspect Oriented Programming
	Structure of the Platform
	Evaluation

