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Problem & Contribution

Problem
• Recent tendency of the complication of the structure of HPC system (GPU, 

many-core processor, FPGA, DSP, etc.) makes it difficult to build efficient 
applications.

• Domain-specific language (DSL) platform is a promising approach. However, 
these platforms are not portable by themselves, and the difficulty of 
development is just transferred to the lower layers. 

Contribution
• Designed the programming model to separate program adaptations for 

systems from program logic by corresponding hardware hierarchies and self-
similarity of region segmentation of stencil programs. 

• Developed the program adapters and optimizers, which are modularized and 
portable; on Aspect-Oriented Programming.

• It enables to separate platform developments and platform turning for 
systems.



Aspect Oriented Programming

In AOP, Cross-cutting Concern in Objects in OOP is 
extracted to Aspects
• In Joint-Point Model, Aspect has Pointcuts and 
Advices.

• Pointcuts extract Joint-Points by Pattern Matchings 
from the base program and weave the Advices. 
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Structure of the Platform

Platform
• Annotation Library
• Memory Library
• Optimization Aspects
• Utility Aspects

Providers
• Parameter and Aspects 

Setting for specific HPC 
Systems

End-Users
• Serial Program Codes of 

Their Applications
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Evaluation
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Results
• Fig. 1 shows the weak scaling performance of the platform. 

It indicates that our platform has a little size of overhead.
• Fig. 2 shows the strong scaling performance of the 

platform. It indicates the platform has some performance 
issue related to the OpenMP Layer.

Future work
• Generalize the programming model to programs with a 

similarity 

• Enhance the AOP compiler or change over to a macro-
system based compiler  (Branch the process depends on 
the data type or interface type and provide features to 
know the logic of a function from aspects. (Naive AOP 
implementation does not have these feature. It will enable 
to adapt the system to a no layer-by-layer  hierarchy.)

• Change the grain size of kernel to adapt to GPU and SIMD 
architecture.

Fig. 1: Comparison between Hand Written 
and Program Generated on Oakforest-PACS 

Fig 2: Comparison among Aspect Combinations  
on Reedbush-U
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