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Current approach to Numerical Relativity

• Accurate modelling of highly dynamical, strong field astrophysical phenomena, such as binary black hole mergers require 
detailed, large scale numerical simulations. Required, for example, in searching for gravitational waves with LIGO. 

• Successful simulation of a binary black hole merger is quite recent1. These simulations are computationally expensive; in 
many cases, prohibits exploration of the full parameter space and even new physics.

• Most NR codes employ a 3+1 split to decompose Einstein’s field equations of general relativity into a Cauchy initial value 
problem. They employ a finite-difference or spectral discretization in each spatial slice and evolve in time.

• Patches have time-like boundaries; characteristics cross in both 
directions. Requires inter-patch communication at every time 
step.

• Communication is expensive; in fact, probably the slowest 
operation in modern HPC systems.

• Parallelism is obtained by dividing the spatial domain into 
patches that can be computed in parallel at each time step.

1Evolution of Binary Black Hole Spacetimes, Pretorius, Phys. Rev. Lett. 95, 121101, 2005 


Σt

Σt+dt
t

ℳ

Patches communicate boundary data on each time step.



Our approach — Spacetime Elements
• Use a spacetime patch. Instead of discretizing in space and time, chunk up the manifold in spacetime patches. 
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• Removes the need for communication at every time step, if one chooses the patch 
boundaries wisely; i.e. null or space-like.

• Use Discontinuous Galerkin Finite elements representation. Provides 
a tunable balance between achieving high work-efficiency and 
increased parallelism on current HPC systems.

• Spacetime patches only require an initial condition at the incoming 
patch boundaries, and the results of the computation, i.e. the 
outgoing patch boundaries, serve as initial conditions for the future 
patches.
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• A simple back-of-the-envelope calculation shows one could reduce 
the number of communication steps by a factor of ~40 (probably too 
optimistic).

To the right, we show a spacetime discretization of a 1+1 spacetime 
manifold. The patches are numbered according to causality. Patches 
with the same number can be solved in parallel. 



Ongoing Research
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A spacetime perturbation propagating in 1+1 Minkowski spacetime. Using 16 
patches in total, with 20 points along each direction in each patch.

• Developing computational infrastructure to solve a toy model: the 
scalar wave equation on curved backgrounds using spacetime 
discretization methods.

• To get the equations of motion, start with the action, 
discretize, and then extremize.

S = ∫ ηαβ ∇αϕ∇βϕ d2x

SN =
N2

∑
p,q,k,l

wpwq ηαβ
pq [Dα]p

l ϕl [Dβ]p
m ϕm SN = ϕTL ϕ

• Using Futures in              

to asynchronously compute multiple spacetime patches 
concurrently. Abstracts away the complexity behind 
explicit message passing between patches.

Define  patchn+1 =  Future of ( patchn L + patchn R )



Future Extensions
• Extend the infrastructure to be able to handle higher dimensional problems, concretely 3+1 for classical 

gravity. 

• Use an unstructured mesh — spacetime elements will now be higher order simplexes. Would allow 
for more flexibility to adapt the grid to the problem. Useful, for example, to study the structure of 
apparent horizons near merger.  

• Work with conformally compactified domains. Removes the need 
for an artificial outer-boundary, and provides a clean way to 
extract radiation at null infinity.

• For unstructured meshes, given a tessellation on an initial hyper 
surface, the mesh front can be advanced in time using the tent-
pitching algorithm proposed by Üngör et. al. 20002.

• Unstructured grid usually considered to be less efficient due to 
the overhead of managing mesh connectivity. However, use of 
higher order polynomials in each element or clubbing multiple 
elements together can amortize this cost.

2Alper Üngör and Alla Sheffer. Tent-pitcher: A meshing algorithm for space-time Discontinuous Galerkin methods

Figure 1.6 from Shripad Thite, Spacetime meshing for Discontinuous Galerkin 
methods. Given a 2D tessellation, the algorithm constructs a tetrahedral spacetime 
mesh.


