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Background
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• Poisson equation often used to model a wide 

range of phenomena in computational physics

• Regardless the methods, large scale simulation 

requires a large computational power, thus 

demand for fast solver

• The observed phenomena used in this research 

related with high energy particle experiment

• When there is a collision that produces charged 

particles across the detector, gas ions distort the 

electron trajectories that will shift the value of 

place and time detected in the endplate

• To correct the distortion, the most time 

consuming step is the calculation of poisson

equation



Model

• Equation

• Discretization

– The 2nd order Finite Difference Method

– 3D stencil notation
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Multigrid

1. Pre-smoothing at fine grid (h), 
compute 𝑢ℎ as solution of 𝐴ℎ𝑢ℎ = 𝑓ℎ

2. Compute residu: 𝑟ℎ = 𝑓ℎ − 𝐴𝑢ℎ

3. Restrict the residu to coarse grid 

(2h): 𝑟2ℎ = ℛℎ
2ℎ𝑟ℎ

4. Solve residual equation at coarse 
grid for the error: 𝐴2ℎ𝑒2ℎ = 𝑟2ℎ

5. Prolongate/interpolate error from 

coarse to fine grid: 𝑒ℎ = ℐ2ℎ
ℎ 𝑒2ℎ

6. Compute the next approximation by: 
𝑢ℎ = 𝑢ℎ + 𝑒ℎ

7. Post=smoothing at fine grid: 𝐴ℎ𝑢ℎ = 𝑓ℎ
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Two grid method:



Parallelization Plan

• Smoother 

– Block Red Black Gauss Seidel (Kawai 2012, 2015)

• Entire grid divided into multiple blocks

• Color ordering applied to each block

• The Gauss Seidel applied to the block in parallel

– Iterate GS in each block more than once to improve 
convergence

– Increase vectorization by applied loop splitting 
method
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