
A Distributed Shared Memory Library with Global-View Tasks on High-Performance Interconnects
Wataru Endo, Kenjiro Taura (Graduate School of Information Science and Technology, The University of Tokyo)

Introduction

•Goal of our research:
• Improve the productivity & performance of

applications on distributed-memory machines

•Our central idea:
shared memory + task parallelism
• Two general programming models applicable to

arbitrary parallel computation patterns
• Intuitive global-view programming

Task-dependency graph

Interconnect

…

•Distributed Shared Memory (DSM)
• Physically distributed, virtually shared
• The system automatically synchronizes the caches between cores

Interconnect
Coherence
Protocol

…

•History of DSM
• 1990s: Early DSM systems appeared
• e.g. TreadMarks [Keleher et al. ’94], JIAJIA [Hu et al. ’98]

• 2000s-: PGAS systems replaced them
• e.g. UPC [El-Ghazawi et al. ’02], Global Arrays [Nieplocha et al. ’06],

OpenSHMEM [Chapman et al. ’10]
• Scalable & global-view programming models
• Explicit communications are still burdensome

•Why DSM again?
1 Improvement of network speed [Ramesh ’13]
• Inter-node latency / DRAM latency ≈ 1000 (1990s), 10 times (2010s)
• Inter-node bandwidth / DRAM bandwidth ≈ 500 (1990s), 2.5 times (2010s)

2 Relationship with many-core architectures
• Shared memory is considered as a bottleneck of scalability
• Techniques for software DSMs are revisited

Cache invalidation methods

•Directory-based coherence
• The state-of-the-art method to implement large-scale shared memory
• Tracking sharers in centralized directories

init. x = x0, dirx={}

P0

shared

R(x)x0

P1 W(x)x1 rel(L)

acq(L)inv(x) R(x)x1

cache

Time

dirx = {P0}
dirx = {}

dirx = {P0}

• Problems of directories:
1 O(P) storage cost to hold sharers (P: # of nodes)
2 Communication traffic of small invalidation messages
3 Complex state management leads to system bugs

•Logical-timestamp-based coherence [Yu et al. ’15]
• Invalidate cache blocks based on logical timestamps (= Lamport clocks)

init. x: (data,wts,rts)=(x0,0,0)

P0

shared

R(x)x0

x:(x0,0,10)

P1 W(x)x1

x:(x1,11,11)

rel(L)

acq(L)

x’s rts ≤ max_ts

max_ts=11

inv(x) R(x)x1

x:(x1,11,21)cache

Time

• Pros of logical-timestamp-based coherence
• Only O(log P) storage is required
• No explicit invalidation message is needed

•Cons of logical-timestamp-based coherence
• Unnecessary cache invalidations (= cache misses) due to the nature of

logical timestamps

•Write notice (WN) (in TreadMarks [Keleher et al. ’94])
• Transfer a set of IDs of written cache blocks on each synchronization

P0

shared

R(x)x0

x=x0

P1 W(x)x1

x=x1

rel(L)

acq(L)

WNs={x}

cache

Time

inv(x) R(x)x1

init. x = x0

x=x1

• Pros of write notices
• # of invalidation messages is reduced
• Unnecessary cache misses don’t increase

•Cons of write notices
• # of write notices infinitely grow during execution;

TreadMarks used a complex global garbage collection mechanism

Implementation of our DSM library

•Numerous design options for DSM systems
• The ideas borrowed from ArgoDSM [Kaxiras et al. ’15]:
• Relaxed consistency model (assuming data-race-free programs)
• RDMA-based implementation
• Page-based DSM (vs. compiler-based)
•Multiple-writer home-based eager protocol

Additionally, we developed 3 techniques:
1 Hybrid cache invalidation method of both

logical-timestamp-based coherence and write notices
• Enables to balance storage costs and # of cache misses

P0

P1 W(z) rel(L)

acq(L)
Time

W(y)W(x)W(w)

x’s wts y’s WN z’s WN

Timestamp-basedTimestamp-based Write notices (n=2)

2 Migrating home-based protocol
• “Always” migrates the home to the latest writer
• Reduces the write latency when the same process writes again
• The latest home is searched via “probable owners” [Li et al. ’89]

3 Call stack management over the DSM
• Simplifies global-view task migration (not evaluated in this poster)
• Allows accessing the automatic variables of other threads;

shared-memory programs can transparently work

Evaluation of NAS Parallel Benchmark on DSM

• Implemented a DSM library
& an OpenMP wrapper on
MPI
• Currently, only static scheduling

& non-nested loops are supported
• Some features including

reductions are not supported

CPU Intel® Xeon® E5-2695 v4
2.1 GHz (max. 3.3 GHz with Turbo boost)
18 cores × 2 sockets / node

Memory 256GB / node
Interconnect Mellanox® Connect-IB® dual port

InfiniBand EDR 4x
OS Red Hat® Enterprise Linux® 7.2
Compiler GCC 4.8.5 (with the option “-O3”)
MPI MVAPICH 2.2

• Speed-ups of NAS Parallel Benchmark
• Strictly speaking, we used an unofficial OpenMP C version [1]
• Parallel reductions are replaced with serial loops

0 50 100 150 200 250 300
Total number of cores

0

10

20

30

40

50

60

70

80

90

S
p
e
e
d
-u

p sequential

our DSM

GCC OpenMP

(a) NAS EP (CLASS=C)

0 20 40 60 80 100 120 140
Total number of cores

0

5

10

15

20

S
p
e
e
d
-u

p

sequential

our DSM

GCC OpenMP

(b) NAS CG (CLASS=C)

0 20 40 60 80 100 120 140
Total number of cores

0

2

4

6

8

10

12

14

S
p
e
e
d
-u

p

sequential

our DSM

GCC OpenMP

(c) NAS BT (CLASS=A)

•Only NAS EP (Embarrassingly-Parallel) on our DSM
becomes faster than in default OpenMP implementation
•Ongoing efforts for performance improvements
• e.g. multi-threading communication performance, prefetching

Communication library for DSM

•We also implemented a communication library designed
mainly for DSM (or PGAS) systems
• Such systems tend to require fine-grained communications
• Current CPU & interconnect architectures require multi-threaded

communications to achieve the maximum performance
• Traditional communication libraries are optimized for coarse-grained &

single-threaded communications

We assumed InfiniBand as the underlying interconnect:

•Queue Pair (QP)
• A hardware queue to which new

requests are posted
•Completion Queue (CQ)
• A hardware queue that notifies

the completion of communication
Interconnect hardware Interconnect hardware

Queue Pair
(QP)

Completion Queue
(CQ)

Data trasnsfer

Software offloading

•We focused on software offloading
[Vaidyanathan et al. ’15]
• Use dedicated threads for communication
• Delegate the communication processing via

lockless queues
• Pros of software offloading:

1 Improves message rates
2 Reduces message injection overheads
•Cons of software offloading:

1 Latency is increased
2 CPU resources are consumed in vain

Application threads

Dedicated
thread

post

Lockless queue

dequeue

enqueue

Communication
request

Interconnect hardware

• Example: PAMI [Kumar et al. ’13]
• Can start & stop the offloading threads using a special feature of

POWER8 processor
•We provided a method to dynamically start & stop the

offloading threads
• Using a user-level thread library (≈ a task-parallel library)

Implemention of our offloading method

• 3 types of components (threads):
• Requesters are the application

threads inserting communication
requests to the command queue
• Executors monitor the command

queue and post the communication
requests to the hardware
• Completers poll the completion of

communication

Requester

Native Interconnect APIs

Callback table

tail

head

Executor

5. post

Completer

Command queue
(MPSC)

notification via callback

4. store
 callback

2. dequeue

6. poll

7. load
 callback

1. enqueue

head

Tag queue (SPSC)

on_completetag

0 (callback)

3. dequeue tail

8. enqueue

• Problem: How to guarantee that the communication threads
are NOT sleeping when there are ongoing requests?
• There may be a race condition if

1 The queue’s producer considers the consumer is awake
2 The queue’s consumer starts sleeping

• Solution: Atomic operations + user-level threads
• Embed a bit whether the consumer is sleeping or not in the queue’s

counter, and if sleeping, awake the consumer using user-level threads
• Faster than the kernel threading primitives (e.g. condition variables)

Evaluation of our communication library

•Microbenchmark on these
metrics:
• Latency, overhead & message rate
• Runs 2 processes (1 process/node) and

one of them has benchmark threads
repeating RDMA READ

CPU Intel® Xeon® E5-2680 v2
2.80GHz, 2 sockets× 10 cores/node

Memory 16GB/node
Interconnect Mellanox® Connect-IB® dual port

InfiniBand FDR 2-port (only 1 port is used)
Driver Mellanox® OFED 2.4-1.0.4
OS Red Hat® Enterprise Linux® Server

release 6.5 (Santiago)
Compiler GCC 4.4.7 (with the option “-O3”)

•Used MassiveThreads 0.97 for user-level threading
• Change to use parent-first scheduling (child-first is the default)
• Run only 10 worker threads/node to avoid NUMA effects

•Compare 3 different methods:
• Direct injection
• The post function is directly called in application threads
• The polling thread (= completer) is executed in a different thread
• Shared resources are guarded by spinlocks

• Static offloading
• There is an executor thread that is spinning on a commmand queue
• Typical software offloading approaches

• Dynamic offloading
• An executor thread is dynamically spawned from application threads

Microbenchmark results of our communication
library

•Latency with 1 QP & CQ
• Reference: 2.01 µsec in perftest benchmark
• Offloading generally increases the latency

100 101 102 103 104 105 106 107

Message Size [bytes]

0

5

10

15

20

La
te

n
cy

 [
µ
se

c]

1 thread

2 threads

4 threads

8 threads

12 threads

16 threads

Direct injection

100 101 102 103 104 105 106 107

Message Size [bytes]

0

5

10

15

20

La
te

n
cy

 [
µ
se

c]

1 thread

2 threads

4 threads

8 threads

12 threads

16 threads

Static offloading

100 101 102 103 104 105 106 107

Message Size [bytes]

0

5

10

15

20

La
te

n
cy

 [
µ
se

c]

1 thread

2 threads

4 threads

8 threads

12 threads

16 threads

Dynamic offloading

•Overhead with 1 QP & CQ
• Direct injection increases the overhead with ≥ 8 threads
• Due to spinlock contentions

• Both static offloading & dynamic offloading can lower the overhead
• Lockless queues reduce contentions

100 101 102 103 104 105 106 107

Message Size [bytes]

0

2

4

6

8

10

12

14

O
v
e
rh

e
a
d
 [
µ
se

c]

1 thread

2 threads

4 threads

8 threads

12 threads

16 threads

Direct injection

100 101 102 103 104 105 106 107

Message Size [bytes]

0

2

4

6

8

10

12

14

O
v
e
rh

e
a
d
 [
µ
se

c]

1 thread

2 threads

4 threads

8 threads

12 threads

16 threads

Static offloading

100 101 102 103 104 105 106 107

Message Size [bytes]

0

2

4

6

8

10

12

14

O
v
e
rh

e
a
d
 [
µ
se

c]

1 thread

2 threads

4 threads

8 threads

12 threads

16 threads

Dynamic offloading

•Message rates with multiple QPs & CQs
• The aggregated message rate increased to about 20 million/sec
•With more QPs & CQs up to 6

• Highly degraded with a few QPs & requester threads
• The difference of 2 methods is how to wake up the consumer thread
•Workers are out of resources in “Fork”
• Additional synchronizations in “Condition variables”

0 2 4 6 8 10 12 14 16

Number of Requester Threads

0

5

10

15

20

25

M
e
ss

a
g
e
 R

a
te

 [
10

6
 m

sg
s/

se
c]

1 QP
2 QPs
3 QPs
4 QPs
6 QPs
8 QPs

Fork (parent-first)

0 2 4 6 8 10 12 14 16

Number of Requester Threads

0

5

10

15

20

25

M
e
ss

a
g
e
 R

a
te

 [
10

6
 m

sg
s/

se
c]

1 QP
2 QPs
3 QPs
4 QPs
6 QPs
8 QPs

Condition variables

Conclusions

•Runtime systems for global-view programming models
• A Distributed Shared Memory (DSM) library
• Transparent execution of shared-memory programs

• A communication library for implementing the DSM
• Software offloading for efficient fine-grained communications on multi-core

architectures

• Future work
• Analyze the bottlenecks of the DSM
• Reduce the latency of software offloading

References

[1] http://benchmark-subsetting.github.io/cNPB/

http://benchmark-subsetting.github.io/cNPB/

