Dynamic Load Balancing Algorithms for E-MPS Method Adopting Polygon Wall Boundary Model **Yoshiki Mizuno School of Engineering, The University of Tokyo**

Introduction

- \triangleright Our research groups developed the fluid analysis system, **HDDM_EMPS**^{*1}.
- > It **formerly** adopted a wall-particles model.
- \succ They developed load balancing algorithms for a wall-particles model^{*1}.
- \succ Subsequently, they replaced it with a **polygon-walls model** ^{*2}.
 - (a) can allocate arbitrarily-shaped triangular polygons for boundaries. (b) has a potential to reduce computational cost for planar walls
- ➤ However, the system with the model was NOT well load-balanced.

Polygon-Walls Model

¹ Murotani, K. et al., Journal of Advanced Simulation in Science and Engineering, Vol. 1, No. 1, 16-35, 2014. ² Mitsume, N. et al., Computational Particle Mechanics, Vol. 2, No. 1, 73–89, 2015.

Polygon-Walls Algorithms

- > The following steps in polygon-walls algorithms increase computational cost in a certain PE that hold particles located at near polygon-wall boundaries.
 - (a) Set up a global bounding box for an analysis domain.
 - (b) Allocate a local bounding box inside the global one.
 - (c) Filter whether the particle *i* is inside the local box.

Application to Hydrostatic Pressure Problem

Based on the two factors explained in the previous page, I developed load balancing algorithms that distribute appropriate weighting values to each PE dynamically.

- \blacktriangleright Hydrostatic water (5.0 × 0.4 × 0.6[m³]) is placed in a cuboid container (5.0 × 0.4 × 1.0[m³]).
- > Polygon walls are expressed by triangular polygons.
- > Each side of this container has two triangular polygons except the specific one, which holds $2n^2$ polygons*.
- > The computational cost increases in PE3 whose analysis domain is in charge of the specific side.

CPU	Intel Core i5
Clock Rate	3.20 GHz
Cache Size	4096 KB
#PEs	4
#Particles	76,800
Time Step	$1.0 imes 10^{-4}[s]$
Particle Distance	$2.5\times 10^{-2}[m]$
Kinematic Viscosity	$1.0\times 10^{-6} \big[m^2/s\big]$
Fluid Density	$1.0\times 10^3 [kg/m^3]$
Effective Radius	$3.1 \times 10^{-2} [m]$
Gravity	$-9.81[m/s^2]$

The original algorithms: graphs^{*1, 2}.

- > give weighting values based on the number of particles each PE hold in order to stabilize the load balancing.
- \blacktriangleright regard a particle as the weighting value of one.
- > repartition an analysis domain of each PE if the balance ratio in a PE exceeds the arbitrary value.

*2 Karypis, G. et al., Siam Review, Vol. 41, No.2, 278-300, 1999.

Influence of Mesh Division on Each PE

* *n* indicates the number of mesh division.

Computational Cost of Two Wall Models

- > A hydrostatic pressure problem is solved to measure the computational cost. > The number of particles in the wall-particles model equals to the total of fluid particles, wall particles, and dummy particles.
- > The number of particles in the polygon-wall particles equals to fluid particles.

There exists a strong possibility that polygon-wall models are more appropriate for large-scale problems than wall-particles models.

Original Algorithms for Wall-Particles

- ▶ utilize ParMETIS, an MPI-based library that partitions unstructured meshes and
- > give other weighting values before the repartition for analysis domains.

^{*1} Murotani, K. et al., Journal of Advanced Simulation in Science and Engineering, Vol. 1, No. 1, 16-35, 2014.

> In the original algorithms are first applied to the hydrostatic pressure problem to investigate how the number of mesh division affects computational time on each PE. \succ The number of mesh division is set to 30, 60, 90, and 120. \succ The simulation time is 1.5×10^{-1} [sec].

> The cost of PE3 increases as the number of mesh division becomes larger. > The cost of other PE does not change very much because the polygon-walls algorithms are not involved in them less than PE3.

Difference in Two Wall Boundary Models

The system with a polygon-walls model was not well load-balanced by the original algorithms adjusted for a wall-particles model due to the following two reasons:

- (1) The amount of particles in a polygon-walls model becomes distinct from the one in a wall-particles model.
- (2) The system holds two different types of particles. (b) Polygon Particles (\bigcirc) \Rightarrow ARE screened in them.

Proposed Algorithms for Polygon Walls

- \succ The proposed algorithms practice the following steps.
- (a) Identify whether a particle *i* is filtered by the polygon-walls algorithms.
- (b) If *i* is a normal particle, then $w_i = 1$ where w_i is a weighting value.
- (c) If *i* is a polygon particle, then $w_i = 1 + c$ where *c* is a constant value assumed to be computational cost caused by the polygon-walls algorithms
- (d) Repeat (a) through (c) for each particle.

Results of Load Balancing

- > The "Proposed1" indicates the proposed algorithms.
- \succ The calculation was conducted three times to take its average.
- > The simulation time is 1.0×10^{-1} [sec], and n = 90.

- \succ The "proposed1" decreased the computational cost for PE3.
- > Computational time in each PE was equally distributed.
- The graph/table demonstrate the validity of the algorithms.

(a) Normal Particles (\bigcirc) \Rightarrow are NOT filtered in the polygon-walls algorithms.

 \mathbf{O}

Original Proposed1	PEs	Original	Proposed1
	PE0	772.72 [s]	989.14 [s]
	PE1	702.41 [s]	1003.99 [s]
	PE2	765.36 [s]	1025.25 [s]
	PE3	1608.12 [s]	991.60 [s]
	Total	1641.49 [s]	1172.84 [s]

The algorithms have been applied to hydrodynamic problems for future works.