College Enrollment, Parental Transfers, and Student Loans

Qian Liu

Department of Economics University of Western Ontario

International HPC Summer School, July 2018

Qian Liu(University of Western Ontario)

College Enrollment, Parental Transfers, and Student Loans

1/5

Motivation

Facts:

- Borrowing for college is increasing. Student loan debt is the second largest sector of household debt.
- Student loans non-repayment remains high. The non-repayment rate among 4 year college graduates at the first year after graduation is 27%.
- Parents not only pay for college expense, but also provide potential support when kids repay student loans (Lochner, Stinebrickner, and Suleymanoglu, 2015).

This paper:

- builds and estimates a dynamic life-cycle model with kids' educational borrowing, endogenous parental transfers, and detailed repayment plan.
- quantifies the effects of borrowing constraints and parental transfers on educational attainment.
- examines the effects of various education policy experiment, such as increasing borrowing limits, introducing the income-contingent repayment, tuition subsidies, especially for those with little or no parental resources.

イロト イポト イヨト イヨト

Time is finite and discrete. The basic unit is a family. A parent (p) and a youth (y) make joint decisions with one-side altruism and full commitment. The decision period begins when a youth graduates from high school. The family solves the following problem:

$$V_0(\Omega_0) = \max_{\Theta_0} E_0 \{ \sum_{t=0}^T \beta^t (u_t^p + \eta u_t^y) + \beta^{T+1} (V_{T+1}^p + \eta V_{T+1}^y) \}.$$

The set of state variables Ω_t differs in different periods. It includes parent's income, parent's asset, kid's human capital, kid's asset, labor supply in last period, and student loan balance.

Choice set Θ_t also differs in different periods. The choices made during lifetime includes whether go to college, what type of college to go to (2-year or 4-year), labor supply, assets accumulation, student loan borrowing and repayment, and parental transfer amount.

Model (cont.)

For example, the Bellman equation after the youth graduates from college is:

$$\begin{split} V_t(\Omega_t) &= \max_{\Theta_t} \{ u_t^\rho + \eta u_t^\gamma + \beta E V_{t+1}(\Omega_{t+1} | \Omega_t, \Theta_t) \}, \\ \text{s.t.} \quad c_t + x_{t+1}^\gamma &= (1+r_f) x_t^\gamma + w_t h_t + b \cdot \mathbb{1}(h_t = 0) + T_t - R_t, \\ c_t^\rho + T_t + x_{t+1}^\rho &= (1+r_f) x_t^\rho + I^\rho, \\ D_{t+1} &= \begin{cases} (1+r_d) D_t - R_t, & \text{if } R_t \in \{R_t^d, R_t^{\text{for}}\}; \\ (1+r_d)(1+\kappa) D_t - \alpha_d R_t^{\text{def}}, & \text{if } R_t = R_t^{\text{def}}, \end{cases} \\ x_{t+1}^\gamma &\geq \min\{(1+r_f) x_{t+1}^\gamma, 0\}, \text{ if } R_t = R_t^{\text{def}}, \\ x_{t+1}^\gamma &\geq -\bar{x}_t^\gamma, \text{ if } R_t \in \{R_t^d, R_t^{\text{for}}\}, \\ x_{t+1}^\gamma &\geq -\bar{x}_t^\rho, \\ T_t &\geq 0. \end{split}$$

Qian Liu(University of Western Ontario)

・ロト ・四ト ・モト ・モト

4/5

3

Data and Estimation

Data:

National Longitudinal Survey of Youth 1997-2013 (NLSY97). It is a panel data with detailed information on respondents' education, employment, asset, and parental transfers. After imposing sample restrictions, the final sample includes 1,602 individuals.

Estimation:

- The model is solved numerically using Fortran and MPI.
- The estimation of the model involves finding the optimal set of parameters to minimize the distance from moments generated by the model and the true data.
- In each iteration, it solves a finite dynamic programming problem with high dimensional continuous state variables and continuous choice variables.

Results:

- Find the optimal set of parameters with economics interpretation.
- Quantifies the effects of borrowing constraints, parental transfers, and student loans policy on educational attainment using the estimated parameters.

イロン 不同 とくほう イロン