

High Performance Computing of Coupling 2D and 3D Numerical Modelling of Flood Propagation and its High Performance Interface and Visualisation

Bobby Minola Ginting

supervised by Prof. E. Rank and Dr.rer.nat.(habil) R.-P. Mundani

bobbyminola.ginting@tum.de

Technical University of Munich Chair for Computation Engineering Ostrava, 8-13 July 2018

International HPC Summer School 2018

Illustration: example of 2D & 3D flow problems

Domain decomposition: between nodes – MPI

Bobby Minola Ginting | 2018

* (High resolution) real topography in Glasgow, UK 3

Domain decomposition: inside a node – OpenMP

- A cell-edge reordering strategy is proposed
 - Helping ease the compiler to exploit the instruction pipelining and parallelisation
 Ginting et al. (2018)² – accepted
- A weighted dynamic load balancing due to wet-dry problems is proposed
 Ginting & Mundani (2018)¹ – under review

Results

Bobby Minola Ginting | 2018

up to 3.6 million cells or 7.2 million edges 5

My in-house code "NUFSAW2D"

My in-house code "NUFSAW3D" in progress

Numerical simUlation of Free surface Sh Allow Water

- written in Fortran
- > cell-centred finite volume method

- Roe, HLLC, central-upwind, and artificial viscosity schemes
- turbulence model depth-averaged $\kappa \epsilon$ & algebraic stress models
- > 1st Euler time stepping or 2nd, 3rd, 4th order Runge-Kutta scheme
- hybrid parallelisation technique: OpenMP + MPI

References

- 1. B.M. Ginting, R.-P. Mundani, Parallel Flood Simulations for Wet-Dry Problems Using Dynamic Load Balancing Concept, 2018. *submitted* to Journal of Computing in Civil Engineering.
- B.M. Ginting, R.-P. Mundani, E. Rank, Parallel Simulations of Shallow Water Solvers for Modelling Overland Flows, 2018. *accepted* in 13th International Conferences on Hydroinformatics.
- B.M. Ginting, R.-P. Mundani, Artificial Viscosity Technique: A Riemannsolver-free method for 2D Urban Flood Modelling on Complex Topography, 2018. in: Advances in Hydroinformatics, Springer Water. <u>https://doi.org/10.1007/978-981-10-7218-5_4</u>
- B.M. Ginting, A Two-dimensional Artificial Viscosity Technique for Modelling Discontinuity in Shallow Water Flows, 2017. Applied Mathematical Modelling. <u>http://dx.doi.org/10.1016/j.apm.2017.01.013</u>