Liquid crystals

B-14

- Liquid Crystals (LCs)
 - phase in the state between solid and liquid.
- Unique optical characteristics
 - Many technological-applications.

Liquid Crystal Display

Optical effect by LC structure

2

Nucleation

B-14

• an early-stage process of phase transitions

molecular condensation

Molecular model

• Hess-Su model

B-14

$$u(r_{ij},\hat{\omega}_i,\hat{\omega}_j) = 4\epsilon \left[\left(\frac{\sigma}{r_{ij}}\right)^{12} - \left(\frac{\sigma}{r_{ij}}\right)^6 (1+\Psi) \right],$$

$$\Psi = 5\epsilon_1 P_2 \left(\hat{\omega}_i \cdot \hat{\omega}_j \right) + 5\epsilon_2 \left[P_2 \left(\hat{\omega}_i \cdot \hat{r}_{ij} \right) + P_2 \left(\hat{\omega}_j \cdot \hat{r}_{ij} \right) \right]. \quad P_2 \left(x \right) = \frac{1}{2} \left(3x^2 - 1 \right).$$

Prefer parallel

Prefer parallel and colinear

- Number of molecules
 - LCs 2.56E+5 (ρ_m = 0.012), Carrier gas 4.27E+5 (ρ_c = 0.02)

-1

Simulation conditions

B-14

- NVT MD simulation with Hess-Su model
- Yasuoka-Matsumoto method [K. Yasuoka et al., J. Chem. Phys., 109, 19 (1998).]
- Monomer, Cluster, Carrier gas (not shown)

Implementation

B-14

Framework for developing particle simulator (FDPS)

Basic concept of FDPS. Colored text corresponds to FDPS APIs.

M. Iwasawa et al., Publications of the Astronomical Society of Japan, 68, 4 (2016).

https://github.com/FDPS/FDPS