Predicting extensive properties of atomistic
systems with deep neural networks
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Key take-away points:

p Large nanoscale systems studied with density functional theory are
computationally expensive (scale as O(N3), N = grid points)

p Deep neural networks scale as O(N), N = number of weights

p We show how to calculate properties of nanoscale systems with deep
learning with and without extensivity
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Density functional theory

Convolutional neural networks

In the Kohn-sham DFT framework, one minimizes the total energy func-
tional

E[n] =— T[n] + Eoxt [n] + EHartree [n] + Exc [n] (1)

by self-consistently solving the one particle Schrodinger equation
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In Equation 1, T is the non-interacting kinetic energy functional, Fey is the en-
ergy due to the interaction of the electrons with the external potential, Fiartree
is the electrostatic energy describing the electron-electron interactions, and Exc
is the exchange-correlation energy. Multiplying equation ?? by 7 (r), summing
over the occupied orbitals and integrating over all space, we get
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In equation 1, we can replace the non-interacting kinetic energy functional with
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such that the total energy is
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Logistic function . .
ex: Logistic function
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What we want to predict
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A pictorial representation of a convolutional kernel operating on a grey-scale image.

The kernel is applied across the entire image (stride = 1) to produce a convoluted

image. The new image pixels are given by
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where a is an activation function. The weights are updated with the back-propagation

algorithm. We essentially need to find the partial derivative of the loss function with

respect to each weight.



Predicting total energies with convolutional neural networks

The networks
used in the study.
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Chemical accuracy: 43.36 meV




Including extensivity in deep neural networks

Below: The process of breaking down
images into smaller ones (tiles) based on

focus and context sizes. The larger image

is generated using Gaussian functions to

represent atomic positions. This was

done for a graphene sheet with nano-

pores.
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Right: The tiles are (simultaneously) fed weights are shared

W, W, W3 between subnets w;

into parallel networks, which are
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summed over to produce the extensive

quantity.

Scaling performance of density
functional theory and extensive
deep neural networks versus

system size. Each unit cell consists

Evaluation time (cpu hours)

of 60 atoms.
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