
OpenMP 4.0 (now 4.5) for

Accelerators

John Urbanic
Parallel Computing Scientist

Pittsburgh Supercomputing Center

Copyright 2017

What is Heterogeneous Programming?

Application Code

+

AcceleratorCPU
20% of Code

Most of compute time.

Compute-Intensive Functions

Rest of Sequential
CPU Code

OpenACC vs. OpenMP

OpenMP has a very similar directive philosophy. This is no surprise as OpenACC was started by

OpenMP members as an “accelerator development branch” with the idea of merging it back in.

OpenMP assume(d) that memory movement isn’t an issue, but that thread startup overhead is. The

traditional directives reflect that.

OpenACC assumes threads are very lightweight, but that data movement onto and off of the

accelerator are significant. The directives reflect that.

But they are both similar in approach and assume that you, the programmer, are responsible for

designating parallelizable loops.

They are also complementary and can be used together very well.

OpenMP Thread Control Philosophy

OpenMP was traditionally oriented towards controlling fully independent processors. In return for the

flexibility to use those processors to their fullest extent, OpenMP assumes that you know what you are doing

and does not recognize data dependencies in the same way as OpenACC.

While you override detected data dependencies in OpenACC (with the independent clause), there is no

such thing in OpenMP. Everything is assumed to be independent. You must be the paranoid one, not the

compiler.

OpenMP assumes that every thread has its own synchronization control (barriers, locks). GPUs do not have

that at all levels. For example, NVIDIA GPUs have synchronization at the warp level, but not the thread

block level. There are implications regarding this difference.

In general, you might observe that OpenMP was built when threads were limited and start up overhead was

considerable (as it still is on CPUs). The design reflects the need to control for this. OpenACC starts with

devices built around very, very lightweight threads.

Intel’s Original MIC Approach

Since the days of RISC vs. CISC,

Intel has mastered the art of

figuring out what is important

about a new processing

technology and saying “why can’t

we do this in x86?”

The Intel Many Integrated Core

(MIC) architecture is about large

die, simpler circuit, and much

more parallelism, in the x86 line.

Courtesy Dan Stanzione, TACC

What is MIC?

Basic Design Ideas:

• Leverage x86 architecture (a CPU with many cores)

• Use x86 cores that are simpler, but allow for more compute throughput

• Leverage existing x86 programming models

• Dedicate much of the silicon to floating point ops., keep some cache(s)

• Keep cache-coherency protocol

• Increase floating-point throughput per core

• Implement as a separate device

• Strip expensive features (out-of-order execution, branch prediction, etc.)

• Widened SIMD registers for more throughput (512 bit)

• Fast (GDDR5) memory on card

Courtesy Dan Stanzione, TACC

Latest MIC Architecture

• Many cores on the die

• L1 and L2 cache

• Bidirectional ring

network for L2 Memory

and PCIe connection

Courtesy Dan Stanzione, TACC

High

Capacity

Memory

High Bandwidth

Memory

Shared Cache

$ $ $ $ $ $ $ $

Knights Landing

Still have a bottleneck to manage.

Small and fast, or large and slow, we still have to pay attention to data locality.

Comparison

CPU GPU MIC

Cores a bunch (4-28) many (>50) many (>60)

Multithreading 2 32 4

SIMD width (DP) 4 (8 soon) 32 8

L1 cache small small small

Shared cache / core huge (2.5MB) tiny (0.03MB) big (0.5MB)

Memory DDR HBM HBM+DDR

OpenMP 4.0 Data Migration

OpenMP comes from an SMP multi-core background. The original idea was to avoid

the pain of using Unix/Posix pthreads directly. As SMPs have no concept of

different memory spaces, OpenMP has not been concerned with that until now.

With OpenMP 4.0, that changes. We now have data migration control and related

capability like data shaping.

#pragma omp target device(0) map(tofrom:B)

OpenMP vs. OpenACC Data Constructs

OpenMP

target data

target enter data

target exit data

target update

declare target

OpenACC

data

enter data

exit data

update

declare

OpenMP vs. OpenACC Data Clauses

OpenMP

map(in:...)

map(out:...)

map(inout:...)

map(alloc:...)

map(release:...)

map(delete:...)

OpenACC

copyin(...)

copyout(...)

copy(...)

create(...)

delete(...)

delete(...) finalize

OpenMP vs. OpenACC Compute Constructs

OpenMP

target

teams

distribute

parallel

for / do

simd

is_device_ptr(...)

OpenACC

parallel / kernels

parallel / kernels

loop gang

parallel / kernels

loop worker or loop gang

loop vector

deviceptr(...)

OpenMP vs. OpenACC Differences

OpenMP

device(n)

depend(to:a)

depend(from:b)

nowait

loops, tasks, sections

atomic

master, single, critical, barrier,

locks, ordered, flush, cancel

OpenACC

async(n)

async(n)

async

loops

atomic

SAXPY in OpenMP 4.0 on NVIDIA

int main(int argc, const char* argv[]) {
int n = 10240; floata = 2.0f; floatb = 3.0f;
float*x = (float*) malloc(n * sizeof(float));
float*y = (float*) malloc(n * sizeof(float));

// Run SAXPY TWICE inside data region
#pragma omp target data map(to:x)
{
#pragma omp target map(tofrom:y)
#pragma omp teams
#pragma omp distribute
#pragma omp parallel for

for(inti = 0; i < n; ++i){
y[i] = a*x[i] + y[i];

}
#pragma omp target map(tofrom:y)
#pragma omp teams
#pragma omp distribute
#pragma omp parallel for

for(inti = 0; i < n; ++i){
y[i] = b*x[i] + y[i];

}
}
}

Courtesy Christian Terboven

Comparing OpenACC with OpenMP 4.0 on NVIDIA & Phi

#pragma omp target device(0) map(tofrom:B)
#pragma omp parallel for
for (i=0; i<N; i++)

B[i] += sin(B[i]);

First two examples

Courtesy Christian Terboven

#pragma omp target device(0) map(tofrom:B)
#pragma omp teams num_teams(num_blocks) num_threads(bsize)
#pragma omp distribute
for (i=0; i<N; i += num_blocks)

#pragma omp parallel for
for (b = i; b < i+num_blocks; b++)

B[b] += sin(B[b]);

#pragma acc kernels
for (i=0; i<N; ++i)

B[i] += sin(B[i]);

OpenMP 4.0 for Intel Xeon Phi

OpenMP 4.0 for NVIDIA GPU

OpenACC for NVIDIA GPU

OpenMP 4.0 Across Architectures

#if defined FORCPU

#pragma omp parallel for simd

#elif defined FORKNC

#pragma omp target teams distribute parallel for simd

#elif defined FORGPU

#pragma omp target teams distribute parallel for \

schedule(static,1)

#elif defined FORKNL

#pragma omp parallel for simd schedule(dynamic)

#endif

for(int j = 0; j < n; ++j)

x[j] += a*y[j];

Courtesy Michael Wolfe

Which way to go?

While this might be an interesting discussion of the finer distinctions between these two

standards and the future merging thereof, it is not. At the moment, there is a simpler

reality:

OpenMP 4.0 was ratified in July 2013, and it will be a while before it has the

widespread support of OpenMP 3. It is currently fully implemented only on Intel

compilers for Xeon Phi and partially now in GCC 5.x and better in GCC 6.1. LLVM

Clang seems to be on way.

OpenACC supports Phi with the CAPS compiler, but via an OpenCL back end. PGI has

had something “coming” for a while. You would really have to have a good reason to

not use the native Intel compiler OpenMP 4.0 at this time.

So, at this time…

If you are using Phi, you are probably going to be using the Intel OpenMP release.

If you are using NVIDIA GPUs, you are going to be using OpenACC.

Of course, there are other ways of programming both of these devices. You might treat

Phi as MPI cores and use CUDA on NVIDIA , for example. But if the directive based

approach is for you, then your path is clear. I don’t attempt to discuss the many other

types of accelerators here (AMD, DSPs, FPGAs, ARM), but these techniques apply there

as well.

And as you should now suspect, even if it takes a while for these to merge as a

standard, it is not a big jump for you to move between them.

Going Hostless

Both Intel and NVIDIA are converging towards a hostless future.

Intel

Plug a bunch of MICs (Knights Landing) into backplanes

Programming model doesn’t really change

NVIDIA

Expanding MIMD capability of hardware with each generation

CUDA evolving towards remote data access with each version

Adding CPU on board (“Project Denver”, etc.)

Some things we did not mention

OpenCL (Khronos Group)

Everyone supports, but not as a primary focus

Intel – OpenMP

NVIDIA – CUDA, OpenACC

AMD – now HSA (hUMA/APU oriented)

Fortran 2008+ threads (sophisticated but not consistently implemented)

C++11 threads are basic (no loops) but better than POSIX

Python threads are fake (due to Global Interpreter Lock)

DirectCompute (Microsoft) is not HPC oriented

C++ AMP (MS/AMD)

TBB (Intel C++ template library)

Cilk (Intel, now in a gcc branch)

Very C++ for threads

