Traffic Model

Parallel Solutions

3 WLV E .
< ;.
C (: ;_‘c T -
A t‘;j :
T A
60 I'N B\)

The Model

- Consider a road with N cells

- Simulate traffic on a roundabout
- I.e. periodic boundary counditions

- If a car moves off the right it reappears on the left
- 1.e. identify cell N+1 with cell 1, and cell O with cell N

epCccC

Pseudo Code

declare arrays old(i) and new(i), i =0,1,...,N,N+1
initialise old(i) for i =1,2,...,N-1,N (eg randomly)
loop over iterations
set 01ld(0) = o0ld(N) and set o0ld(N+1l) = old(1)
loop over i =1,...,N
if old(i) =1

if old(i+l) = 1 then new(i) = 1 else new(i) = 0
if old(i) =0
if old(i-1) = 1 then new(i) = 1 else new(i) =0

end loop over i
set old(i) = new(i) for i =1,2,...,N-1,N
end loop over iterations

epCccC

Traffic Solutions 4

Message-Passing Strategy (1)
Broadcast data _

- G
to 2 processes: /

\J
- J
~

Split calculation
between 2 processes:

- /)
YT

Process 1 Process 2

*Globally resynchronise all data after each move
- areplicated data strategy
*Every process stores the entire state of the calculation
* e.g. any process can compute total number of moves

epCccC

Traffic Solutions 5

Parallelisation Strategy (2)
o oo (@ |

Scatter data N DN y

between 2 processes: .

distributed data strategy _
*Must communicate with neighbouring processes to update edge cells.

Internal cells can be updated independently.
*Sum local number of moves on each process to obtain total number of
moves at each iteration.

Split calculation

between 2 processes: R e
Process 1 Process 2

*Each process must know which part of roadway it is updating.
*Synchronise at completion of each iteration and obtain total

number of moves
epcc

AN J

Parallelisation

- Load balance not an issue
- updates take equal computation regardless of state of road
- split the road into equal pieces of size N/P

- For each piece
- rule for cell i depends on cells i-1 and i+1
- the N/P - 2 interior cells can be updated independently in parallel
- however, the edge cells are updated by other processors
- similar to having separate rules for boundary conditions
- Communications required
- to get value of edge cells from other processors
- to produce a global sum of the number of cars that move

epCccC

Traffic Solutions 7

Message Passing Parallelisation
o oo o | [o[0e (o [0

- A J

\;\

2 processes,
add halos

J)

v C [Clelelo
to halos O O O
sesndll [SIEEEIN N[)E)

interior cells O O O

local moves = 1 local moves =2

gl OWB/
epcc

< .
o A
= = -
o]
Fa

Threads Parallelisation

- Load balance not an issue
- updates take equal computation regardless of state of road
- split the road into equal pieces of size N/T (for T threads)

- For each piece
- rule for cell i depends on cells i-1 and i+1
- can parallelise as we are updating new array based on old
- Synchronisation required
- to ensure threads do not start until boundary data is updated

- to produce a global sum of the number of cars that move
- to ensure that all threads have finished before next iteration

epCccC

< —
2 o
=
C
o

.
Fork-Join Model

Pﬂ-
Pol(To) Po(Ty)
a, a,
a0, o |
a, 2, |
o o,

N~
i A
= = =
o]
Fa

epCccC

Traffic Solutions

Shared Variables Parallelisation

serial: initialise old(i) for i =1,2,...,N-1,N
serial: loop over iterations
serial: set 01ld(0) = o0ld(N) and set old(N+1l) = old(1)
parallel: loop over i =1,...,N
if old(i) =1
if old(i+l) = 1 then ...
if old(i) =0
if old(i-1)
end loop over i

1 then ...

synchronise
parallel: set old(i) = new(i) for i =1,2,...,N-1,N
synchronise

end loop over iterations

- private: i, shared: old, new, N
- reduction operation to compute number of moves

epCccC

