Traffic Model

Parallel Solutions
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The Model

- Consider a road with N cells

- Simulate traffic on a roundabout
- I.e. periodic boundary counditions

- If a car moves off the right it reappears on the left
- 1.e. identify cell N+1 with cell 1, and cell O with cell N
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Pseudo Code

declare arrays old(i) and new(i), i =0,1,...,N,N+1
initialise old(i) for i =1,2,...,N-1,N (eg randomly)
loop over iterations
set 01ld(0) = o0ld(N) and set o0ld(N+1l) = old(1)
loop over i =1,...,N
if old(i) =1

if old(i+l) = 1 then new(i) = 1 else new(i) = 0
if old(i) =0
if old(i-1) = 1 then new(i) = 1 else new(i) =0

end loop over i
set old(i) = new(i) for i =1,2,...,N-1,N
end loop over iterations
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Message-Passing Strategy (1)
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Split calculation
between 2 processes:
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Process 1 Process 2

*Globally resynchronise all data after each move
- areplicated data strategy
*Every process stores the entire state of the calculation
* e.g. any process can compute total number of moves
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Parallelisation Strategy (2)
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Scatter data N DN y

between 2 processes: .

distributed data strategy _
*Must communicate with neighbouring processes to update edge cells.

Internal cells can be updated independently.
*Sum local number of moves on each process to obtain total number of
moves at each iteration.

Split calculation

between 2 processes: R e
Process 1 Process 2

*Each process must know which part of roadway it is updating.
*Synchronise at completion of each iteration and obtain total

number of moves
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Parallelisation

- Load balance not an issue
- updates take equal computation regardless of state of road
- split the road into equal pieces of size N/P

- For each piece
- rule for cell i depends on cells i-1 and i+1
- the N/P - 2 interior cells can be updated independently in parallel
- however, the edge cells are updated by other processors
- similar to having separate rules for boundary conditions
- Communications required
- to get value of edge cells from other processors
- to produce a global sum of the number of cars that move
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Message Passing Parallelisation
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Threads Parallelisation

- Load balance not an issue
- updates take equal computation regardless of state of road
- split the road into equal pieces of size N/T (for T threads)

- For each piece
- rule for cell i depends on cells i-1 and i+1
- can parallelise as we are updating new array based on old
- Synchronisation required
- to ensure threads do not start until boundary data is updated

- to produce a global sum of the number of cars that move
- to ensure that all threads have finished before next iteration
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Fork-Join Model
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Shared Variables Parallelisation

serial: initialise old(i) for i =1,2,...,N-1,N
serial: loop over iterations
serial: set 01ld(0) = o0ld(N) and set old(N+1l) = old(1)
parallel: loop over i =1,...,N
if old(i) =1
if old(i+l) = 1 then ...
if old(i) =0
if old(i-1)
end loop over i

1 then ...

synchronise
parallel: set old(i) = new(i) for i =1,2,...,N-1,N
synchronise

end loop over iterations

- private: i, shared: old, new, N
- reduction operation to compute number of moves
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