Shared Variables

Parallel Programming using Threads
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Outline

- Shared-Variables Parallelism
- threads
- shared-memory architectures

- Practicalities
- operating systems
- usage on real HPC architectures
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Shared Variables

Threads-based parallelism
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Threads

- For many applications each process has a single thread...
- ... but a single process can contain multiple threads
- each thread is like a child process contained within parent process
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Shared-memory concepts

- Have already covered basic concepts
- threads can all see data of parent process

- P
- can run on different cores 0

- potential for parallel speedup
Po(To) Po(T)
[ 9
Qg a,
a, [ |
a, ’
o a;

S




5
Analogy

- One very large whiteboard in a two-person office
- the shared memory

- Two people working on the same problem
- the threads running on different cores attached to the memory

- How do they collaborate? shared
- working together
- but not interfering

- Also need private data




Threads
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Thread Communication

Thread 1 Thread 2
Program MYa=23

a=mvya mya=a-+1
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Synchronisation

- Synchronisation crucial for shared variables approach
- thread 2’s code must execute after thread 1

- Most commonly use global barrier synchronisation
- other mechanisms such as locks also available

- Writing parallel codes relatively straightforward
- access shared data as and when its needed

- Getting correct code can be difficult!
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Specific example

- Computing asum = ay+ a; + .. a,
- shared: asum=0
- main array: a[8]
- result: asum

' : Po(To) Po(T4)
- private: s °
- loop counter: i d a,
* loop limits: istart, istop a, loop: i =+ist?:_:]t,istop as
myasum += a[i
* local sum: myasum a end loop dg

- synchronisation: i v | @
+ thread0: asum += myasum

* barrier
- threadl: asum += myasum

asum
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Thread Placement: Shared Memory
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Threads in HPC

- Threads existed before parallel computers
- designed for concurrency

- many more threads running than physical cores
- scheduled / descheduled as and when needed

- For parallel computing
- typically run a single thread per core
- want them all to run all the time

- OS optimisations
- place threads on selected cores

- stop them from migrating
epCcC




Practicalities

- Threading can only operate within a single node
- each node is a shared-memory computer (e.g. 28 cores on Bridges)
- controlled by a single operating system

- Simple parallelisation
- speed up a serial program using threads
- run an independent program per node (e.g. a simple task farm)

- More complicated
- use multiple processes (e.g. message-passing — see later)
- on Bridges: could run one process per node, 28 threads per process

- or 2 procs per node / 14 threads per process
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Threads: Summary

- Shared blackboard a good analogy for thread parallelism

- Requires a shared-memory architecture
- iIn HPC terms, cannot scale beyond a single node

- Threads operate independently on the shared data
- also have private data for local variables
- need to ensure they don'’t interfere; synchronisation is crucial

- Threading in HPC usually uses OpenMP directives
- supports common parallel patterns such as reductions
- e.g. loop limits computed by the compiler
- e.g. summing values across threads done automatically
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