Shared Variables

Parallel Programming using Threads

3 WLV E .
<, 5,
C (: ;_‘c T -
A t‘:j :
T A
60 I'N B\)

Outline

- Shared-Variables Parallelism
- threads
- shared-memory architectures

- Practicalities
- operating systems
- usage on real HPC architectures

epCccC

Shared Variables

Threads-based parallelism

\)N 1VE %
< S
e CC | 2
~ e -
o) pS T
N . Y Q.f"
oL,
OrnpY

Threads

- For many applications each process has a single thread...
- ... but a single process can contain multiple threads
- each thread is like a child process contained within parent process

Pq

Po(To) I Po(T4)
L L 4

epCccC

Shared-memory concepts

- Have already covered basic concepts
- threads can all see data of parent process

- P
- can run on different cores 0

- potential for parallel speedup
Po(To) Po(T)
[9
Qg a,
a, [|
a, ’
o a;

S

5
Analogy

- One very large whiteboard in a two-person office
- the shared memory

- Two people working on the same problem
- the threads running on different cores attached to the memory

- How do they collaborate? shared
- working together
- but not interfering

- Also need private data

Threads

Thread 1

Thread 2

—

Thread 3

PC

—
Private data?tC

Private data

UPC

Private data ’

r-_J

Shared data

)

S

=)

epCccC

Thread Communication

Thread 1 Thread 2
Program MYa=23

a=mvya mya=a-+1
Private 53 54
data |— - |
Shared 23 |
data

W~
o A
~ 8 -
o]
o

epCccC

L R
Synchronisation

- Synchronisation crucial for shared variables approach
- thread 2’s code must execute after thread 1

- Most commonly use global barrier synchronisation
- other mechanisms such as locks also available

- Writing parallel codes relatively straightforward
- access shared data as and when its needed

- Getting correct code can be difficult!

epCccC

Specific example

- Computing asum = ay+ a; + .. a,
- shared: asum=0
- main array: a[8]
- result: asum

' : Po(To) Po(T4)
- private: s °
- loop counter: i d a,
* loop limits: istart, istop a, loop: i =+ist?:_:]t,istop as
myasum += a[i
* local sum: myasum a end loop dg

- synchronisation: i v | @
+ thread0: asum += myasum

* barrier
- threadl: asum += myasum

asum

epcc

D
S
=
j<
S
T

Thread Placement: Shared Memory

R R LI

AN

_ oS >

\W

User

< -

Z)
= -
C

i

\)NIVE#;\
A -
e CC 8 -
Y T
) P AS
I

Threads in HPC

- Threads existed before parallel computers
- designed for concurrency

- many more threads running than physical cores
- scheduled / descheduled as and when needed

- For parallel computing
- typically run a single thread per core
- want them all to run all the time

- OS optimisations
- place threads on selected cores

- stop them from migrating
epCcC

Practicalities

- Threading can only operate within a single node
- each node is a shared-memory computer (e.g. 28 cores on Bridges)
- controlled by a single operating system

- Simple parallelisation
- speed up a serial program using threads
- run an independent program per node (e.g. a simple task farm)

- More complicated
- use multiple processes (e.g. message-passing — see later)
- on Bridges: could run one process per node, 28 threads per process

- or 2 procs per node / 14 threads per process
Dbt epCccC

<, -
< X
=
C
o

Threads: Summary

- Shared blackboard a good analogy for thread parallelism

- Requires a shared-memory architecture
- iIn HPC terms, cannot scale beyond a single node

- Threads operate independently on the shared data
- also have private data for local variables
- need to ensure they don'’t interfere; synchronisation is crucial

- Threading in HPC usually uses OpenMP directives
- supports common parallel patterns such as reductions
- e.g. loop limits computed by the compiler
- e.g. summing values across threads done automatically

epCccC

