
Shared Variables
Parallel Programming using Threads

Outline

• Shared-Variables Parallelism

• threads

• shared-memory architectures

• Practicalities

• operating systems

• usage on real HPC architectures

2

Shared Variables

Threads-based parallelism

3

Threads

• For many applications each process has a single thread…

• … but a single process can contain multiple threads

• each thread is like a child process contained within parent process

4

Shared-memory concepts

• Have already covered basic concepts

• threads can all see data of parent process

• can run on different cores

• potential for parallel speedup

5

Analogy

• One very large whiteboard in a two-person office

• the shared memory

• Two people working on the same problem

• the threads running on different cores attached to the memory

• How do they collaborate?

• working together

• but not interfering

• Also need private data

my

data

shared

data
my

data

6

Threads

PC PC PC Private data Private data Private data

Shared data

Thread 1 Thread 2 Thread 3

7

Thread 1 Thread 2

mya=23

mya=a+1

23

23 24

Program

Private

data

Shared

data

a=mya

Thread Communication

8

Synchronisation

• Synchronisation crucial for shared variables approach

• thread 2’s code must execute after thread 1

• Most commonly use global barrier synchronisation

• other mechanisms such as locks also available

• Writing parallel codes relatively straightforward

• access shared data as and when its needed

• Getting correct code can be difficult!

9

Specific example
• Computing asum = a0+ a1 + … a7

• shared:

• main array: a[8]

• result: asum

• private:

• loop counter: i

• loop limits: istart, istop

• local sum: myasum

• synchronisation:

• thread0: asum += myasum

• barrier

• thread1: asum += myasum

loop: i = istart,istop

 myasum += a[i]

end loop

asum

asum=0

10

Hardware

Memory

Processor

Shared Bus

Processor Processor Processor Processor

• Needs support of a shared-memory architecture

 Single Operating System

11

Thread Placement: Shared Memory

OS

User

T T T T T T T T T T T T T T T T

12

Threads in HPC

• Threads existed before parallel computers

• designed for concurrency

• many more threads running than physical cores

• scheduled / descheduled as and when needed

• For parallel computing

• typically run a single thread per core

• want them all to run all the time

• OS optimisations

• place threads on selected cores

• stop them from migrating

13

Practicalities

• Threading can only operate within a single node

• each node is a shared-memory computer (e.g. 28 cores on Bridges)

• controlled by a single operating system

• Simple parallelisation

• speed up a serial program using threads

• run an independent program per node (e.g. a simple task farm)

• More complicated

• use multiple processes (e.g. message-passing – see later)

• on Bridges: could run one process per node, 28 threads per process

• or 2 procs per node / 14 threads per process

• or 4 / 7 ...

14

Threads: Summary
• Shared blackboard a good analogy for thread parallelism

• Requires a shared-memory architecture
• in HPC terms, cannot scale beyond a single node

• Threads operate independently on the shared data
• also have private data for local variables

• need to ensure they don’t interfere; synchronisation is crucial

• Threading in HPC usually uses OpenMP directives
• supports common parallel patterns such as reductions

• e.g. loop limits computed by the compiler

• e.g. summing values across threads done automatically

15

