
Message-Passing
Parallel Programming using Processes

Outline

• Message-Passing Parallelism

• processes

• messages

• communications patterns

• Practicalities

• usage on real HPC architectures

2

Generic Parallel Machine

• Good conceptual model is collection of laptops

• Connected together by a network

laptop1

laptop2

laptop3

laptop4

laptop5

• Each laptop is called

a compute node

• each has its own

operating system and

network connection

• Suppose each node

is a quadcore laptop

• total system has 20

processor-cores

Analogy

• Two whiteboards in different single-person offices

• the distributed memory

• Two people working on the same problem

• the processes on different nodes attached to the interconnect

• How do they collaborate?

• to work on single problem

• Explicit communication

• e.g. by telephone

• no shared data

my

data

my

data

4

a=23 Recv(1,b)
Process 1 Process 2

23

23

24

23

Program

Data

Send(2,a) a=b+1

Process communication

5

Synchronisation

• Synchronisation is automatic in message-passing

• the messages do it for you

• Make a phone call …

• … wait until the receiver picks up

• Receive a phone call

• … wait until the phone rings

• No danger of corrupting someone else’s data

• no shared blackboard

6

Communication modes

• Sending a message can either be synchronous or

asynchronous

• A synchronous send is not completed until the message

has started to be received

• An asynchronous send completes as soon as the

message has gone

• Receives are usually synchronous - the receiving process

must wait until the message arrives

7

Synchronous send

• Analogy with faxing a letter.

• Know when letter has started to be received.

8

Asynchronous send

• Analogy with posting a letter.

• Only know when letter has been posted, not when it has been

received.

9

Point-to-Point Communications

• We have considered two processes

• one sender

• one receiver

• This is called point-to-point communication

• simplest form of message passing

• relies on matching send and receive

• Close analogy to sending personal emails

10

Collective Communications

• A simple message communicates between two processes

• There are many instances where communication between

groups of processes is required

• Can be built from simple messages, but often

implemented separately, for efficiency

11

Broadcast: one to all communication

12

Broadcast

• From one process to all others

8

8 8

8

8

8

13

Scatter

• Information scattered to many processes

0 1 2 3 4 5

0

1

3

4

5

2

14

Gather

• Information gathered onto one process

0 1 2 3 4 5

0

1

3

4

5

2

15

Reduction Operations

• Combine data from several processes to form a single result

Strike?

16

Reduction

• Form a global sum, product, max, min, etc.

0

1

3

4

5

2

15

17

Hardware

• Natural map to

distributed-memory

• one process per

processor-core

• messages go over

the interconnect,

between nodes/OS’s

Processor

Processor

Processor

Processor

Processor

Processor

Processor
Processor

Interconnect

18

Practicalities
• 8-core machine might only have 2

nodes

• how do we run MPI on a real HPC
machine?

• Mostly ignore architecture

• pretend we have single-core nodes

• one MPI process per processor-core

• e.g. run 8 processes on the 2 nodes

• Messages between processes on
the same node are fast

• but remember they also share access
to the network

Interconnect

19

Message Passing on Shared Memory

• Run one process per core

• don’t directly exploit shared memory

• analogy is phoning your office mate

• actually works well in practice!

my

data

my

data

• Message-passing

programs run by a

special job launcher

• user specifies #copies

• some control over

allocation to nodes

20

Issues

• Sends and receives must match

• danger of deadlock

• program will stall (forever!)

• Possible to write very complicated programs, but …

• most scientific codes have a simple structure

• often results in simple communications patterns

• Use collective communications where possible

• may be implemented in efficient ways

21

Summary (i)

• Messages are the only form of communication

• all communication is therefore explicit

• Most systems use the SPMD model

• Single Program Multiple Data

• all processes run exactly the same code

• each has a unique ID

• processes can take different branches in the same codes

• Basic communications form is point-to-point

• collective communications implement more complicated patterns

that often occur in many codes

22

Summary (ii)

• Message-Passing is a programming model

• that is implemented by MPI

• the Message-Passing Interface is a library of function/subroutine calls

• Essential to understand the basic concepts

• private variables

• explicit communications

• SPMD

• Major difficulty is understanding the Message-Passing model

• a very different model to sequential programming

if (x < 0)

 print(“Error”);

 exit;

23

Exercise: computing pi

• Will use this as a simple example for MPI and OpenMP

• Traffic Model (see later) is a much better analogue of a

real simulation code

• but pi calculation illustrates basic concepts

24

