

Advanced OpenMP

Lecture 4: OpenMP and MPI

Motivation

• In recent years there has been a trend towards clustered architectures

• Distributed memory systems, where each node consist of a traditional

shared memory multiprocessor (SMP).

– with the advent of multicore chips, every cluster is like this

• Single address space within each node, but separate nodes have

separate address spaces.

http://www.epcc.ed.ac.uk/

Clustered architecture

http://www.epcc.ed.ac.uk/

Programming clusters

• How should we program such a machine?

• Could use MPI across whole system

• Cannot (in general) use OpenMP/threads across whole

system

– requires support for single address space

– this is possible in software, but inefficient

– also possible in hardware, but expensive

• Could use OpenMP/threads within a node and MPI between

nodes

– is there any advantage to this?

http://www.epcc.ed.ac.uk/

Issues

We need to consider:

• Development / maintenance costs

• Portability

• Performance

http://www.epcc.ed.ac.uk/

Development / maintenance

• In most cases, development and maintenance will be harder

than for an MPI code, and much harder than for an OpenMP

code.

• If MPI code already exists, addition of OpenMP may not be

too much overhead.

• In some cases, it may be possible to use a simpler MPI

implementation because the need for scalability is reduced.

– e.g. 1-D domain decomposition instead of 2-D

http://www.epcc.ed.ac.uk/

Portability

• Both OpenMP and MPI are themselves highly portable (but

not perfect).

• Combined MPI/OpenMP is less so

– main issue is thread safety of MPI

– if maximum thread safety is assumed, portability will be reduced

• Desirable to make sure code functions correctly (maybe with

conditional compilation) as stand-alone MPI code (and as

stand-alone OpenMP code?)

http://www.epcc.ed.ac.uk/

Thread Safety

• Making libraries thread-safe can be difficult

– lock access to data structures

– multiple data structures: one per thread

– …

• Adds significant overheads

– which may hamper standard (single-threaded) codes

• MPI defines various classes of thread usage

– library can supply an appropriate implementation

– see later

http://www.epcc.ed.ac.uk/

Performance

Four possible performance reasons for mixed OpenMP/MPI

codes:

1. Replicated data

2. Poorly scaling MPI codes

3. Limited MPI process numbers

4. MPI implementation not tuned for SMP clusters

http://www.epcc.ed.ac.uk/

Replicated data

• Some MPI codes use a replicated data strategy

– all processes have a copy of a major data structure

– classical domain decomposition code have replication in halos

– MPI buffers can consume significant amounts of memory

• A pure MPI code needs one copy per process/core.

• A mixed code would only require one copy per node

– data structure can be shared by multiple threads within a process

– MPI buffers for intra-node messages no longer required

• Will be increasingly important

– amount of memory per core is not likely to increase in future

• Halo regions are a type of replicated data

– can become significant for small domains (i.e. many processes)

http://www.epcc.ed.ac.uk/

Effect of domain size on halo storage

Local domain size Halos % of data in halos

503 = 125000 523 – 503 = 15608 11%

203 = 8000 223 – 203 = 2648 25%

103 = 1000 123 – 103 = 728 42%

• Typically, using more processors implies a smaller domain

size per processor

– unless the problem can genuinely weak scale

• Although the amount of halo data does decrease as the local

domain size decreases, it eventually starts to occupy a

significant amount fraction of the storage

– even worse with deep halos or >3 dimensions

http://www.epcc.ed.ac.uk/

Poorly scaling MPI codes

• If the MPI version of the code scales poorly, then a mixed

MPI/OpenMP version may scale better.

• May be true in cases where OpenMP scales better than MPI

due to:

 1. Algorithmic reasons.

– e.g. adaptive/irregular problems where load balancing in MPI is

difficult.

 2. Simplicity reasons

– e.g. 1-D domain decomposition

http://www.epcc.ed.ac.uk/

Load balancing

• Load balancing between MPI processes can be hard

– need to transfer both computational tasks and data from overloaded

to underloaded processes

– transferring small tasks may not be beneficial

– having a global view of loads may not scale well

– may need to restrict to transferring loads only between neighbours

• Load balancing between threads is much easier

– only need to transfer tasks, not data

– overheads are lower, so fine grained balancing is possible

– easier to have a global view

• For applications with load balance problems, keeping the

number of MPI processes small can be an advantage

http://www.epcc.ed.ac.uk/

Limited MPI process numbers

• MPI library implementation may not be able to handle

millions of processes adequately.

– e.g. limited buffer space

– Some MPI operations are hard to implement without O(p)
computation, or O(p) storage in one or more processes

– e.g. AlltoAllv, matching wildcards

• Likely to be an issue on very large systems.

• Mixed MPI/OpenMP implementation will reduce number of

MPI processes.

http://www.epcc.ed.ac.uk/

MPI implementation not tuned for SMP clusters

• Some MPI implementations are not well optimised for SMP

clusters

– less of a problem these days

• Especially true for collective operations (e.g. reduce, alltoall)

• Mixed-mode implementation naturally does the right thing

– reduce within a node via OpenMP reduction clause

– then reduce across nodes with MPI_Reduce

• Mixed-mode code also tends to aggregate messages

– send one large message per node instead of several small ones

– reduces latency effects, and contention for network injection

http://www.epcc.ed.ac.uk/

Styles of mixed-mode programming

• Master-only

– all MPI communication takes place in the sequential part of the

OpenMP program (no MPI in parallel regions)

• Funneled

– all MPI communication takes place through the same (master) thread

– can be inside parallel regions

• Serialized

– only one thread makes MPI calls at any one time

– distinguish sending/receiving threads via MPI tags or communicators

– be very careful about race conditions on send/recv buffers etc.

• Multiple

– MPI communication simultaneously in more than one thread

– some MPI implementations don’t support this

– …and those which do mostly don’t perform well

http://www.epcc.ed.ac.uk/

OpenMP Master-only

!$OMP parallel

 work…

!$OMP end parallel

call MPI_Send(…)

!$OMP parallel

 work…

!$OMP end parallel

#pragma omp parallel

{

 work…

}

ierror=MPI_Send(…);

#pragma omp parallel

{

 work…

}

Fortran C

http://www.epcc.ed.ac.uk/

OpenMP Funneled

!$OMP parallel

… work

!$OMP barrier

!$OMP master

 call MPI_Send(…)

!$OMP end master

!$OMP barrier

.. work

!$OMP end parallel

#pragma omp parallel

{

 … work

 #pragma omp barrier

 #pragma omp master

 {

 ierror=MPI_Send(…);

 }

 #pragma omp barrier

 … work

}

Fortran C

http://www.epcc.ed.ac.uk/

OpenMP Serialized

!$OMP parallel

… work

!$OMP critical

 call MPI_Send(…)

!$OMP end critical

… work

!$OMP end parallel

#pragma omp parallel

{

 … work

 #pragma omp critical

 {

 ierror=MPI_Send(…);

 }

 … work

}

Fortran C

http://www.epcc.ed.ac.uk/

OpenMP Multiple

!$OMP parallel

… work

call MPI_Send(…)

… work

!$OMP end parallel

#pragma omp parallel

{

 … work

 ierror=MPI_Send(…);

 … work

}

Fortran C

http://www.epcc.ed.ac.uk/

MPI_Init_thread

• MPI_Init_thread works in a similar way to MPI_Init by initialising MPI on

the main thread.

• It has two integer arguments:

– Required ([in] Level of desired thread support)

– Provided ([out] Level of provided thread support)

• C syntax

int MPI_Init_thread(int *argc, char *((*argv)[]), int

required, int *provided);

• Fortran syntax

MPI_INIT_THREAD(REQUIRED, PROVIDED, IERROR)

 INTEGER REQUIRED, PROVIDED, IERROR

http://www.epcc.ed.ac.uk/

MPI_Init_thread

• MPI_THREAD_SINGLE

– Only one thread will execute.

• MPI_THREAD_FUNNELED

– The process may be multi-threaded, but only the main thread will make

MPI calls (all MPI calls are funneled to the main thread).

• MPI_THREAD_SERIALIZED

– The process may be multi-threaded, and multiple threads may make

MPI calls, but only one at a time: MPI calls are not made concurrently

from two distinct threads (all MPI calls are serialized).

• MPI_THREAD_MULTIPLE

– Multiple threads may call MPI, with no restrictions.

http://www.epcc.ed.ac.uk/

MPI_Init_thread

• These integer values are monotonic; i.e.,

– MPI_THREAD_SINGLE < MPI_THREAD_FUNNELED

< MPI_THREAD_SERIALIZED < MPI_THREAD_MULTIPLE

• Note that these values do not strictly map on to the

four MPI/OpenMP Mixed-mode styles as they are

more general (i.e. deal with Posix threads where we

don’t have “parallel regions”, etc.)

– e.g. no distinction here between Master-only and Funneled

– see MPI standard for full details

http://www.epcc.ed.ac.uk/

MPI_Query_thread()

• MPI_Query_thread() returns the current level of thread support

– Has one integer argument: provided [in] as defined for MPI_Init_thread()

• C syntax

int MPI_query_thread(int *provided);

• Fortran syntax

MPI_QUERY_THREAD(PROVIDED, IERROR)

 INTEGER PROVIDED, IERROR

• Need to compare the output manually, i.e.

If (provided < requested) {

 printf(“Not a high enough level of thread support!\n”);

 MPI_Abort(MPI_COMM_WORLD,1)

 …etc.

}

http://www.epcc.ed.ac.uk/

Pitfalls

• The OpenMP implementation may introduce additional overheads not

present in the MPI code (e.g. synchronisation, false sharing, sequential

sections).

• The mixed implementation may require more synchronisation than a pure

OpenMP version, if non-thread-safety of MPI is assumed.

• Implicit point-to-point synchronisation may be replaced by (more

expensive) barriers.

• In the pure MPI code, the intra-node messages will often be naturally

overlapped with inter-node messages

– harder to overlap inter-thread communication with inter-node messages.

• NUMA effects can limit the scalability of OpenMP: it may be

advantageous to run one MPI process per NUMA domain, rather than

one MPI process per node.

– process placement becomes very important

http://www.epcc.ed.ac.uk/

Master-only

• Advantages

– simple to write and maintain

– clear separation between outer (MPI) and inner (OpenMP) levels of

parallelism

– no concerns about synchronising threads before/after sending

messages

• Disadvantages

– threads other than the master are idle during MPI calls

– all communicated data passes through the cache where the master

thread is executing.

– inter-process and inter-thread communication do not overlap.

– only way to synchronise threads before and after message transfers

is by parallel regions which have a relatively high overhead.

– packing/unpacking of derived datatypes is sequential.

http://www.epcc.ed.ac.uk/

Example

 DO I=1,N

 A(I) = B(I) + C(I)

 END DO

 CALL MPI_RECV(A(0),1,.....)

 DO I = 1,N

 D(I) = A(I-1) + A(I)

 END DO

!$omp parallel do

!$omp parallel do

Intra-node messages

overlapped with inter-

node

Inter-thread communication

occurs here

Implicit barrier added here

* nthreads

* nthreads

 CALL MPI_BSEND(A(N * nthreads),1,.....) CALL MPI_BSEND(A(N),1,.....)

http://www.epcc.ed.ac.uk/

Funneled

• Advantages

– relatively simple to write and maintain

– cheaper ways to synchronise threads before and after message

transfers

– possible for other threads to compute while master is in an MPI call

• Disadvantages

– less clear separation between outer (MPI) and inner (OpenMP) levels

of parallelism

– all communicated data still passes through the cache where the

master thread is executing.

– inter-process and inter-thread communication still do not overlap.

http://www.epcc.ed.ac.uk/

OpenMP Funneled with overlapping (1)

Can’t using

worksharing here!

http://www.epcc.ed.ac.uk/

OpenMP Funneled with overlapping (2)

Higher overheads and

harder to synchronise

between teams

http://www.epcc.ed.ac.uk/

Serialised

• Advantages

– easier for other threads to compute while one is in an MPI call

– can arrange for threads to communicate only their “own” data (i.e. the

data they read and write).

• Disadvantages

– getting harder to write/maintain

– more, smaller messages are sent, incurring additional latency

overheads

– need to use tags or communicators to distinguish between messages

from or to different threads in the same MPI process.

http://www.epcc.ed.ac.uk/

Distinguishing between threads

• By default, a call to MPI_Recv by any thread in an MPI

process will match an incoming message from the sender.

• To distinguish between messages intended for different

threads, we can use MPI tags

– if tags are already in use for other purposes, this gets messy

• Alternatively, different threads can use different MPI

communicators

– OK for simple patterns, e.g. where thread N in one process only ever

communicates with thread N in other processes

– more complex patterns also get messy

http://www.epcc.ed.ac.uk/

Multiple

• Advantages

– Messages from different threads can (in theory) overlap

– many MPI implementations serialise them internally.

– Natural for threads to communicate only their “own” data

– Fewer concerns about synchronising threads (responsibility passed to

the MPI library)

• Disdavantages

– Hard to write/maintain

– Not all MPI implementations support this – loss of portability

– Most MPI implementations don’t perform well like this

– Thread safety implemented crudely using global locks.

http://www.epcc.ed.ac.uk/

End points

• A possible solution to permit more easier use and efficient

implementations of Multiple is to extend MPI so that an MPI

rank may have multiple source and destination identifiers

(end points)

• e.g. if we want 4 threads per MPI process we could create an

MPI communicator with 4 end points per rank

– each thread can use a different end point

• Avoids need to use tags to identify threads

• Currently under discussion in MPI Forum

– might appear in MPI 4.0?

http://www.epcc.ed.ac.uk/

Performance

• Conceptually easy to write

– rather messy

– hard to get good performance: cannot just concentrate on key kernels

P P P P P P P P P P P P

MPI MPI + OpenMP

http://www.epcc.ed.ac.uk/

Consequences

Performance

Developer Time

http://www.epcc.ed.ac.uk/

Summary

• Hybrid programming still a major current research topic

• Many see it as the key to exascale, however …

– will require MPI_THREAD_MULTIPLE style to avoid synchronisation

– ... and end points to make this usable?

• Achieving correctness is hard

– have to consider race conditions on messages

• Achieving performance is hard

– entire application must be threaded (efficiently!)

• Must optimise choice of

– numbers of processes/threads

– placement of processes/threads on NUMA architectures

http://www.epcc.ed.ac.uk/

