
Rules and Regulations of the

3rd Annual IHPCSS

Challenge

Trophy bears no relationship

to reality.

Starting Point

We give you working codes in MPI, OpenMP and OpenACC
copy “challenge.tar” from /home/dsh/ihpcss17/.

Set up to tackle a problem of size 672x672
challenge is to run a much larger problem

Straightforward solutions
no attempts at parallel (or serial) optimisation

each only uses a single model

No compilation instructions
you decide how best to compile

2

General Rules

Due Thursday midnight (!)

4 Nodes of Bridges

Use any combination of MPI, OpenMP, OpenACC and Python
base versions (C and Fortran) for MPI, OpenMP and OpenACC on moodle

single tar file: challenge.tar

How fast can you run a 10752 x 10752 Laplace code to
convergence?

weird size chosen to decompose exactly on, e.g., 2, 4, 28 and112 procs

can use smaller size of 672 x 672 for development

3

Some Specifics

Can’t change kernel (Must retain two core loops source)

Can change number of MPI processes (Does not have to be 112 or 4)

1 Source File

1 Combined Environment/Compile/Submit/Execute script

to make it easy for us to run your solutions!

Mail to d.henty@epcc.ed.ac.uk by deadline

4

Rules For Lawyers

No libraries

Don’t mess with timer placement

?

5

Reality Checks

Serial code converges at 3580 time steps. Yours should too.

As we know, this is not enough to verify correctness. You should find
point [8064][10702] in C and (10702,8064) in Fortran converges to 17.1
degrees.

As discussed, the 10752 result differs from the 672 result.*
smaller problem converges in 3264 time steps

check values: [504][622] in C, (622,504) in Fortran = 15.5 degrees

Plugging in Gauss-Seidel or Successive Over Relaxation (SOR) would be easy and
interesting. But, not for our contest.

6

http://www.cs.berkeley.edu/~demmel/cs267/lecture24/lecture24.html is a brief analysis of these issues.

Printing out the test point

Straightforward in serial, OpenMP or OpenACC

single process, temperature stored in a single global array

More complicated when you introduce MPI – must locate owning process

if (8064/columns == mype+1) then

 write(*,*) 'PE ', mype, ': T(10702,8064) = ', temperature(10702,columns)

end if

if (8064/ROWS == my_PE_num+1)

 printf("PE %d: T(8064,10702) = %f\n", my_PE_num,Temperature[ROWS][10702]);

This hacky piece of code requires at least 4 MPI processes!

7

http://www.cs.berkeley.edu/~demmel/cs267/lecture24/lecture24.html is a brief analysis of these issues.

Suggested Things to Explore

Compiler flags
-O3

Compiler
see Bridges documentation for how
to use different modules

MPI Environment Variables
man mpi

Thread placement
google for KMP_AFFINITY

8

MPI

OpenMP OpenACC

?

User Guide is your friend!

Decision

On Friday morning we will take the top self-reported speeds and

run them in an interactive session

Timings not within 10% of self-reported time will be disqualified

Codes should print out “test point” at conclusion of run.

Best of two runs for each finalist will determine winner

9

