
VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Introduction to

Parallel Performance Engineering

VI-HPS Team
Christian Feld

Jülich Supercomputing Centre

(with content used with permission from tutorials by
Bernd Mohr/JSC, Brian Wylie/JSC, Markus Geimer/JSC,

Luiz DeRose/Cray, David Böhme/LLNL,
Andreas Knüpfer/TUD, Jens Doleschal/TUD)

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Performance: an old problem

IHPCSS17 - PERFORMANCE ANALYSIS AND OPTIMIZATION 2

“The most constant difficulty in contriving

the engine has arisen from the desire to

reduce the time in which the calculations

were executed to the shortest which is

possible.”
Charles Babbage

1791 – 1871

Difference Engine

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Today: the “free lunch” is over

■ Moore's law is still in charge, but
■ Clock rates no longer increase

■ Performance gains only through

increased parallelism

■ Optimizations of applications more

difficult
■ Increasing application complexity

■ Multi-physics

■ Multi-scale

■ Increasing machine complexity
■ Hierarchical networks / memory

■ More CPUs / multi-core

 Every doubling of scale reveals a new bottleneck!

IHPCSS17 - PERFORMANCE ANALYSIS AND OPTIMIZATION 3

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Performance factors of parallel applications

■ “Sequential” performance factors
■ Computation

 Choose right algorithm, use optimizing compiler

■ Cache and memory
 Tough! Only limited tool support, hope compiler gets it right

■ Input / output
 Often not given enough attention

■ “Parallel” performance factors
■ Partitioning / decomposition

■ Communication (i.e., message passing)

■ Multithreading

■ Synchronization / locking
 More or less understood, good tool support

IHPCSS17 - PERFORMANCE ANALYSIS AND OPTIMIZATION 4

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Tuning basics

■ Successful engineering is a combination of
■ Careful setting of various tuning parameters

■ The right algorithms and libraries

■ Compiler flags and directives

■ …

■ Thinking !!!

■ Measurement is better than guessing
■ To determine performance bottlenecks

■ To compare alternatives

■ To validate tuning decisions and optimizations
 After each step!

IHPCSS17 - PERFORMANCE ANALYSIS AND OPTIMIZATION 5

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Performance engineering workflow

IHPCSS17 - PERFORMANCE ANALYSIS AND OPTIMIZATION 6

•Calculation of metrics

•Identification of performance
problems

•Presentation of results

•Modifications intended to
eliminate/reduce performance
problem

•Collection of performance data

•Aggregation of performance data

•Prepare application with symbols

•Insert extra code (probes/hooks)

Preparation Measurement

Analysis Optimization

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

The 80/20 rule

■ Programs typically spend 80% of their time in 20% of the code

■ Programmers typically spend 20% of their effort to get 80% of the total speedup

possible for the application
 Know when to stop!

■ Don't optimize what does not matter
 Make the common case fast!

IHPCSS17 - PERFORMANCE ANALYSIS AND OPTIMIZATION 7

“If you optimize everything,

you will always be unhappy.”

Donald E. Knuth

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Metrics of performance

■ What can be measured?
■ A count of how often an event occurs

■ E.g., the number of MPI point-to-point messages sent

■ The duration of some interval
■ E.g., the time spent these send calls

■ The size of some parameter
■ E.g., the number of bytes transmitted by these calls

■ Derived metrics
■ E.g., rates / throughput

■ Needed for normalization

IHPCSS17 - PERFORMANCE ANALYSIS AND OPTIMIZATION 8

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Example metrics

■ Execution time

■ Number of function calls

■ CPI
■ CPU cycles per instruction

■ FLOPS
■ Floating-point operations executed per second

IHPCSS17 - PERFORMANCE ANALYSIS AND OPTIMIZATION 9

“math” Operations?

 HW Operations?

 HW Instructions?

 32-/64-bit? …

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Execution time

■ Wall-clock time
■ Includes waiting time: I/O, memory, other system activities

■ In time-sharing environments also the time consumed by other applications

■ CPU time
■ Time spent by the CPU to execute the application

■ Does not include time the program was context-switched out
■ Problem: Does not include inherent waiting time (e.g., I/O)

■ Problem: Portability? What is user, what is system time?

■ Problem: Execution time is non-deterministic
■ Use mean or minimum of several runs

IHPCSS17 - PERFORMANCE ANALYSIS AND OPTIMIZATION 10

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Inclusive vs. Exclusive values

■ Inclusive
■ Information of all sub-elements aggregated into single value

■ Exclusive
■ Information cannot be subdivided further

IHPCSS17 - PERFORMANCE ANALYSIS AND OPTIMIZATION 11

Inclusive Exclusive

int foo()
{
 int a;
 a = 1 + 1;

 bar();

 a = a + 1;
 return a;

}

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Classification of measurement techniques

■ How are performance measurements triggered?
■ Sampling

■ Code instrumentation

■ How is performance data recorded?
■ Profiling / Runtime summarization

■ Tracing

■ How is performance data analyzed?
■ Online

■ Post mortem

IHPCSS17 - PERFORMANCE ANALYSIS AND OPTIMIZATION 12

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Sampling

 Running program is periodically interrupted to take

measurement
 Timer interrupt, OS signal, or HWC overflow

 Service routine examines return-address stack

 Addresses are mapped to routines using symbol table

information

 Statistical inference of program behavior
 Not very detailed information on highly volatile metrics

 Requires long-running applications

Works with unmodified executables

IHPCSS17 - PERFORMANCE ANALYSIS AND OPTIMIZATION 13

Time

main foo(0) foo(1) foo(2) int main()
{
 int i;

 for (i=0; i < 3; i++)
 foo(i);

 return 0;
}

void foo(int i)
{

 if (i > 0)
 foo(i – 1);

}

Measurement

t
9

t
7

t
6

t
5

t
4

t
1

t
2

t
3

t
8

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Instrumentation

Measurement code is inserted such that every event

of interest is captured directly
 Can be done in various ways

 Advantage:
 Much more detailed information

 Disadvantage:
 Processing of source-code / executable

necessary

 Large relative overheads for small functions

IHPCSS17 - PERFORMANCE ANALYSIS AND OPTIMIZATION 14

Time

Measurement int main()
{
 int i;

 for (i=0; i < 3; i++)
 foo(i);

 return 0;
}

void foo(int i)
{

 if (i > 0)
 foo(i – 1);

}

Time

t
1

t
2

t
3

t
4

t
5

t
6

t
7

t
8

t
9

t
10 t

11
t
12

t
13

t
14

main foo(0) foo(1) foo(2)

Enter(“main”);

Leave(“main”);

Enter(“foo”);

Leave(“foo”);

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Instrumentation techniques

■ Static instrumentation
■ Program is instrumented prior to execution

■ Dynamic instrumentation
■ Program is instrumented at runtime

■ Code is inserted
■ Manually

■ Automatically
■ By a preprocessor / source-to-source translation tool

■ By a compiler

■ By linking against a pre-instrumented library / runtime system

■ By binary-rewrite / dynamic instrumentation tool

IHPCSS17 - PERFORMANCE ANALYSIS AND OPTIMIZATION 15

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Critical issues

■ Accuracy
■ Intrusion overhead

■ Measurement itself needs time and thus lowers performance

■ Perturbation
■ Measurement alters program behaviour

■ E.g., memory access pattern

■ Accuracy of timers & counters

■ Granularity
■ How many measurements?

■ How much information / processing during each measurement?

 Tradeoff: Accuracy vs. Expressiveness of data

IHPCSS17 - PERFORMANCE ANALYSIS AND OPTIMIZATION 16

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Classification of measurement techniques

■ How are performance measurements triggered?
■ Sampling

■ Code instrumentation

■ How is performance data recorded?
■ Profiling / Runtime summarization

■ Tracing

■ How is performance data analyzed?
■ Online

■ Post mortem

IHPCSS17 - PERFORMANCE ANALYSIS AND OPTIMIZATION 17

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Profiling / Runtime summarization

■ Recording of aggregated information
■ Total, maximum, minimum, …

■ For measurements
■ Time

■ Counts
■ Function calls

■ Bytes transferred

■ Hardware counters

■ Over program and system entities
■ Functions, call sites, basic blocks, loops, …

■ Processes, threads

 Profile = summarization of events over execution interval

IHPCSS17 - PERFORMANCE ANALYSIS AND OPTIMIZATION 18

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Types of profiles

■ Flat profile
■ Shows distribution of metrics per routine / instrumented region

■ Calling context is not taken into account

■ Call-path profile
■ Shows distribution of metrics per executed call path

■ Sometimes only distinguished by partial calling context

(e.g., two levels)

■ Special-purpose profiles
■ Focus on specific aspects, e.g., MPI calls or OpenMP constructs

■ Comparing processes/threads

IHPCSS17 - PERFORMANCE ANALYSIS AND OPTIMIZATION 19

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Tracing

■ Recording detailed information about significant points (events) during execution of

the program
■ Enter / leave of a region (function, loop, …)

■ Send / receive a message, …

■ Save information in event record
■ Timestamp, location, event type

■ Plus event-specific information (e.g., communicator,

sender / receiver, …)

■ Abstract execution model on level of defined events

 Event trace = Chronologically ordered sequence of

 event records

IHPCSS17 - PERFORMANCE ANALYSIS AND OPTIMIZATION 20

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

58 ENTER foo

62 SEND to B

64 EXIT foo

...

...

Local trace A

Local trace B

60 ENTER bar

68 RECV from A

69 EXIT bar

...

...

Event tracing

void foo() {

 ...

 send(B, tag, buf);
 ...

}

Process A

void bar() {

 ...
 recv(A, tag, buf);

 ...

}

Process B

MONITOR

MONITOR

s
y
n
c
h
ro

n
iz

e
(d

)
void bar() {
 trc_enter("bar");
 ...
 recv(A, tag, buf);
 trc_recv(A);
 ...
 trc_exit("bar");
}

void foo() {
 trc_enter("foo");
 ...
 trc_send(B);
 send(B, tag, buf);
 ...
 trc_exit("foo");
}

instrument

Global trace view

58 A ENTER foo

60 B ENTER bar

62 A SEND to B

64 A EXIT foo

68 B RECV from A

...

69 B EXIT bar

...

(Virtual merge)

IHPCSS17 - PERFORMANCE ANALYSIS AND OPTIMIZATION 21

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Tracing Pros & Cons

■ Tracing advantages

■ Event traces preserve the temporal and spatial relationships among individual events

(context)

■ Allows reconstruction of dynamic application behaviour on any required level of abstraction

■ Most general measurement technique
■ Profile data can be reconstructed from event traces

■ Disadvantages

■ Traces can very quickly become extremely large

■ Writing events to file at runtime may causes perturbation

IHPCSS17 - PERFORMANCE ANALYSIS AND OPTIMIZATION 22

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Classification of measurement techniques

■ How are performance measurements triggered?
■ Sampling

■ Code instrumentation

■ How is performance data recorded?
■ Profiling / Runtime summarization

■ Tracing

■ How is performance data analyzed?
■ Online

■ Post mortem

IHPCSS17 - PERFORMANCE ANALYSIS AND OPTIMIZATION 23

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Online analysis

■ Performance data is processed during measurement run

■ Process-local profile aggregation

■ Requires formalized knowledge about performance bottlenecks

■ More sophisticated inter-process analysis using

■ “Piggyback” messages

■ Hierarchical network of analysis agents

■ Online analysis often involves application steering to interrupt and re-configure the

measurement

IHPCSS17 - PERFORMANCE ANALYSIS AND OPTIMIZATION 24

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Post-mortem analysis

■ Performance data is stored at end of measurement run

■ Data analysis is performed afterwards

■ Automatic search for bottlenecks

■ Visual trace analysis

■ Calculation of statistics

IHPCSS17 - PERFORMANCE ANALYSIS AND OPTIMIZATION 25

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Example: Time-line visualization

IHPCSS17 - PERFORMANCE ANALYSIS AND OPTIMIZATION 26

58 A ENTER foo

60 B ENTER bar

62 A SEND to B

64 A EXIT foo

68 B RECV from A

...

69 B EXIT bar

...

main
foo
bar

58 60 62 64 66 68 70

B

A

Global trace view

Post-Mortem

Analysis

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Trace visualizers

■ Jumpshot (ANL) Process-local profile aggregation

■ Free, basic MPI visualizer (routines, messages)

■ SLOG-2 format

■ MPE tracing + converters from TAU, (EPILOG)

■ Paraver (BSC)

■ Free, extremely flexible and programmable visualizer

■ PRV format

■ Extrae tracing + converters from TAU, EPILOG, (OTF)

■ Vampir (TUD)

■ Commercial portable trace visualizer

■ OTF2, OTF, EPILOG format

■ Intel trace collector and analyzer

■ Commercial, Intel-only trace collection and visualizer

IHPCSS17 - PERFORMANCE ANALYSIS AND OPTIMIZATION 27

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Event Trace Visualization with Vampir

 Alternative and supplement to automatic analysis

 Show dynamic run-time behavior graphically at any

level of detail

 Provide statistics and performance metrics

 Timeline charts
 Show application activities and communication along a time axis

 Summary charts
 Provide quantitative results for the currently selected time

interval

 IHPCSS17 - PERFORMANCE ANALYSIS AND OPTIMIZATION 28

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Visualization of the NPB-MZ-MPI / BT trace

IHPCSS17 - PERFORMANCE ANALYSIS AND OPTIMIZATION 29

Detailed counter
information over time

for an individual
process.

Function Legend

Function Summary

Navigation Toolbar

Master Timeline

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

“Real world” example

“A picture is worth a 1000 words ...“

IHPCSS17 - PERFORMANCE ANALYSIS AND OPTIMIZATION 30

MPI ring example

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Automatic trace analysis

 Idea
 Automatic search for patterns of inefficient behavior

 Classification of behavior & quantification of significance

 Identification of delays as root causes of inefficiencies

 Guaranteed to cover the entire event trace

 Quicker than manual/visual trace analysis

 Parallel replay analysis exploits available memory & processors to deliver scalability

31

Call

path

P
ro

p
e
rt

y

Location

Low-level

event trace

High-level

result
Analysis

IHPCSS17 - PERFORMANCE ANALYSIS AND OPTIMIZATION

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Scalasca Trace Tools: Objective

 Development of a scalable trace-based performance analysis toolset

for the most popular parallel programming paradigms
 Current focus: MPI, OpenMP, and POSIX threads

 Specifically targeting large-scale parallel applications
 Such as those running on IBM Blue Gene or Cray systems

with one million or more processes/threads

 Latest release:
 Scalasca v2.3.1 coordinated with Score-P v2.0.2 (May 2016)

32 IHPCSS17 - PERFORMANCE ANALYSIS AND OPTIMIZATION

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Scalasca Trace Tools features

 Open source, 3-clause BSD license

 Fairly portable
 IBM Blue Gene, Cray XT/XE/XK/XC, SGI Altix, Fujitsu FX10/100 & K computer,

Linux clusters (x86, Power, ARM), Intel Xeon Phi, ...

 Uses Score-P instrumenter & measurement libraries
 Scalasca v2 core package focuses on trace-based analyses

 Supports common data formats
 Reads event traces in OTF2 format

 Writes analysis reports in CUBE4 format

 Current limitations:
 Unable to handle traces
 With MPI thread level exceeding MPI_THREAD_FUNNELED

 Containing CUDA or SHMEM events, or OpenMP nested parallelism

 PAPI/rusage metrics for trace events are ignored

33 IHPCSS17 - PERFORMANCE ANALYSIS AND OPTIMIZATION

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

S
c
o
re

-P

Scalasca trace analysis

34

Scalasca workflow

Instr.

target

application

Measurement

library

HWC

Parallel wait-
state search

Wait-state
report

Local event
traces

Summary
report

Optimized measurement configuration

Instrumenter
compiler / linker

Instrumented
executable

Source
modules

R
e
p
o
rt

m

a
n
ip

u
la

ti
o
n

Which problem?
Where in the

program?
Which

process?

IHPCSS17 - PERFORMANCE ANALYSIS AND OPTIMIZATION

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Waiting time caused by a blocking receive operation posted earlier than the

corresponding send

 Applies to blocking as well as non-blocking communication

time

lo
c
a

tio
n

 MPI_Recv

MPI_Send

time

lo
c
a
tio

n
 MPI_Recv

MPI_Send

MPI_Irecv MPI_Wait

MPI_Send

time

lo
c
a

tio
n

 MPI_Recv MPI_Irecv

MPI_Isend

MPI_Wait

MPI_Isend MPI_Wait MPI_Wait

Example: “Late Sender” wait state

35 IHPCSS17 - PERFORMANCE ANALYSIS AND OPTIMIZATION

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Example: Critical path

 Shows call paths and processes/threads that are responsible for the program’s

wall-clock runtime

 Identifies good optimization candidates and parallelization bottlenecks

36

time

 Recv

 Recv

lo
c
a

tio
n

 foo

 foo

 foo

 bar

Send

 bar

 bar

Send foobar

 foobar

 foobar

 Recv

 Recv

Computation Communication Wait state Critical path

IHPCSS17 - PERFORMANCE ANALYSIS AND OPTIMIZATION

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Example: Root-cause analysis

 Classifies wait states into direct and indirect (i.e., caused by other wait states)

 Identifies delays (excess computation/communication) as root causes of wait states

 Attributes wait states as delay costs

37

time

 Recv

 Recv

lo
c
a

tio
n

 foo

 foo

 foo

Send

Send Recv

 Recv

Computation

Communication

Wait state

Delay

Direct

Direct Indirect

IHPCSS17 - PERFORMANCE ANALYSIS AND OPTIMIZATION

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Example: Root-cause analysis - CESM Sea Ice Module

38 IHPCSS17 - PERFORMANCE ANALYSIS AND OPTIMIZATION

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Example: Root-cause analysis - CESM Sea Ice Module

39 IHPCSS17 - PERFORMANCE ANALYSIS AND OPTIMIZATION

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Example: Root-cause analysis - CESM Sea Ice Module

40 IHPCSS17 - PERFORMANCE ANALYSIS AND OPTIMIZATION

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Typical performance analysis procedure

■ Do I have a performance problem at all?
■ Time / speedup / scalability measurements

■ What is the key bottleneck (computation / communication)?
■ MPI / OpenMP / flat profiling

■ Where is the key bottleneck?
■ Call-path profiling, detailed basic block profiling

■ Why is it there?
■ Hardware counter analysis, trace selected parts to keep trace size manageable

■ Does the code have scalability problems?
■ Load imbalance analysis, compare profiles at various sizes function-by-function

IHPCSS17 - PERFORMANCE ANALYSIS AND OPTIMIZATION 42

