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Performance: an old problem
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| “The most constant difficulty in contriving
Difference Engine the engine has arisen from the desire to
reduce the time in which the calculations
were executed to the shortest which is
possible.”

Charles Babbage
1791 - 1871
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Today: the “free lunch” is over

= Moore's law is still in charge, but !

= Clock rates no longer increase 10° HaoRmaL

= Performance gains only through
increased parallelism

- . . . mmm==_ Transistors
= Optimizations of applications more b —Cpesd i
difficult me  Power (W) -=w
wemm  Perf/Clock tick

= Increasing application complexity
= Multi-physics
= Multi-scale

= Increasing machine complexity
= Hierarchical networks / memory

= More CPUs / multi-core e
= Every doubling of scale reveals a new bottleneck! .| /—
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Performance factors of parallel applications

= 'Sequential” performance factors
= Computation
% Choose right algorithm, use optimizing compiler
= Cache and memory
= Tough! Only limited tool support, hope compiler gets it right

= Input / output
= Often not given enough attention

= Parallel” performance factors
= Partitioning / decomposition
= Communication (i.e., message passing)
= Multithreading

= Synchronization / locking
% More or less understood, good tool support

IHPCSS17 - PERFORMANCE ANALYSIS AND OPTIMIZATION 4
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Tuning basics

= Successful engineering is a combination of
= Careful setting of various tuning parameters
= The right algorithms and libraries
= Compiler flags and directives

= Thinking !!!

= Measurement is better than guessing
= To0 determine performance bottlenecks

= [0 compare alternatives

= To validate tuning decisions and optimizations
& After each step!

IHPCSS17 - PERFORMANCE ANALYSIS AND OPTIMIZATION
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Performance engineering workflow

~.

(e Prepare application with symbols
eInsert extra code (probes/hooks)

¢ Collection of performance data
e Aggregation of performance data

N Preparation Measurement

e Optimization

e Calculation of metrics

e Identification of performance
problems

e Presentation of results

e Modifications intended to
eliminate/reduce performance
problem

-
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The 80/20 rule

= Programs typically spend 80% of their time in 20% of the code

= Programmers typically spend 20% of their effort to get 80% of the total speedup

possible for the application
& Know when to stop!

= Don't optimize what does not matter
& Make the common case fast!

“If you optimize everything,
you will always be unhappy.”

Donald E. Knuth
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Metrics of performance

= What can be measured?
= A count of how often an event occurs
= E.g., the number of MPI point-to-point messages sent

= The duration of some interval
= E.g., the time spent these send calls

= The size of some parameter
= E.g., the number of bytes transmitted by these calls

s Derived metrics

= E.qg., rates / throughput
= Needed for normalization

IHPCSS17 - PERFORMANCE ANALYSIS AND OPTIMIZATION 8
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Example metrics

s EXxecution time
= Number of function calls

s CPI
= CPU cycles per instruction
= FLOPS
= Floating-point operations executed per secondg

“math” Operations?
HW Operations?
HW Instructions?

32-/64-bit? ...

IHPCSS17 - PERFORMANCE ANALYSIS AND OPTIMIZATION
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Execution time

= Wall-clock time
= Includes waiting time: I/O, memory, other system activities
= In time-sharing environments also the time consumed by other applications

= CPU time
= Time spent by the CPU to execute the application

= Does not include time the program was context-switched out

= Problem: Does not include inherent waiting time (e.g., I/O)
= Problem: Portability? What is user, what is system time?

s Problem: Execution time is non-deterministic
= Use mean or minimum of several runs

IHPCSS17 - PERFORMANCE ANALYSIS AND OPTIMIZATION 10



Inclusive vs. Exclusive values
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= Inclusive

= Information of all sub-elements aggregated into single value

s EXxclusive

= Information cannot be subdivided further

Inclusive

IHPCSS17 - PERFORMANCE ANALYSIS AND OPTIMIZATION
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Exclusive

{

int foo ()

int a;

a = 1 + 1;

bar () ;

a = a + 1;

return a;

11
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Classification of measurement techniques

= How are performance measurements triggered?
= Sampling
= Code instrumentation

= How is performance data recorded?
= Profiling / Runtime summarization
= [racing

= How is performance data analyzed?

= Online
s Post mortem

IHPCSS17 - PERFORMANCE ANALYSIS AND OPTIMIZATION 12
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Sampling

Yoo b
— [[ I | | |
RN | ro0(0) | |foo(1) | |foo(2) int main ()

{

= Running program is periodically interrupted to take int 1;
measurement for (1=0; 1 < 3; i++)
= Timer interrupt, OS signal, or HWC overflow too (1)
= Service routine examines return-address stack return 0;
= Addresses are mapped to routines using symbol table }
information void foo (int i)
» Statistical inference of program behavior {
= Not very detailed information on highly volatile metrics if (i > 0)
= Requires long-running applications foo(1 - 1);

= Works with unmodified executables )
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Instrumentation

t t. tt t t

E.O

’[iLl t}ZtEB tim

I I ‘ >

foo (0) foo (1) foo (2)

4 %
— 1
| main |

Measurement

= Measurement code is inserted such that every event

of interest is captured directly
= Can be done in various ways

{

= Advantage: }
= Much more detailed information
» Disadvantage: {
» Processing of source-code / executable
necessary

» Large relative overheads for small functions }

Time

int main ()

int 1i;

Enter (“main”) ;

for (i=0; 1 < 3;
foo (1) ;

Leave (“main”) ;

return O;

i4++)

void foo (int 1)

Enter (“foo”) ;

if (1 > 0)
foo(i - 1);

Leave (“foo”) ;

IHPCSS17 - PERFORMANCE ANALYSIS AND OPTIMIZATION
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Instrumentation techniques
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=« Static instrumentation
= Program is instrumented prior to execution

= Dynamic instrumentation
= Program is instrumented at runtime

s« Code is inserted

= Manually

= Automatically

By a preprocessor / source-to-source translation tool

By a compiler

By linking against a pre-instrumented library / runtime system
By binary-rewrite / dynamic instrumentation tool

IHPCSS17 - PERFORMANCE ANALYSIS AND OPTIMIZATION
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Critical issues

= Accuracy

= Intrusion overhead
= Measurement itself needs time and thus lowers performance

= Perturbation
= Measurement alters program behaviour
= E.g., memory access pattern

= Accuracy of timers & counters

= Granularity

= How many measurements?
= How much information / processing during each measurement?

& Tradeoff: Accuracy vs. Expressiveness of data

IHPCSS17 - PERFORMANCE ANALYSIS AND OPTIMIZATION 16
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Classification of measurement techniques

= How are performance measurements triggered?
= Sampling
= Code instrumentation

= How is performance data recorded?

= Profiling / Runtime summarization
= Tracing

= How is performance data analyzed?
= Online
s Post mortem

IHPCSS17 - PERFORMANCE ANALYSIS AND OPTIMIZATION 17
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Profiling / Runtime summarization

= Recording of aggregated information
= Jotal, maximum, minimum, ...

m FOr measurements

= lime

= Counts
= Function calls
= Bytes transferred
= Hardware counters

= Over program and system entities
= Functions, call sites, basic blocks, loops, ...
= Processes, threads

& Profile = summarization of events over execution interval

IHPCSS17 - PERFORMANCE ANALYSIS AND OPTIMIZATION
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Types of profiles

= Flat profile
= Shows distribution of metrics per routine / instrumented region
= Calling context is not taken into account

= Call-path profile

= Shows distribution of metrics per executed call path
= Sometimes only distinguished by partial calling context
(e.g., two levels)

= Special-purpose profiles
= Focus on specific aspects, e.g., MPI calls or OpenMP constructs
= Comparing processes/threads

IHPCSS17 - PERFORMANCE ANALYSIS AND OPTIMIZATION 19
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Tracing

= Recording detailed information about significant points (events) during execution of

the program

= Enter / leave of a region (function, loop, ...)
= Send / receive a message, ...

= Save information in event record
= Tlimestamp, location, event type

= Plus event-specific information (e.g., communicator,
sender / receiver, ...)

s Abstract execution model on level of defined events

@ Event trace = Chronologically ordered sequence of
event records

IHPCSS17 - PERFORMANCE ANALYSIS AND OPTIMIZATION 20



Process A

void foo() {
trc_enter("foo");

i'r'c_send(B);
send(B, tag, buf);

i'r'c_exit("foo");

}

instrument

Process B

void bar() {
trc_enter("bar");

recv(A, tag, buf):
trc_recv(A);

i'r'c_exit(" bar");

}

IHPCSS17 - PERFORMANCE ANALYSIS AND OPTIMIZATION
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Event tracing

MONITOR
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Local trace A

MONITOR

58

ENTER foo

62

SEND to B

64

EXIT foo

Local trace B

Global trace view

58 | A | ENTER foo
60 | B | ENTER bar
62| A |SENDto B
64 | A | EXIT foo
68 | B | RECV from A
69 | B | EXIT bar

A

(Virtual merge)

60

ENTER bar

68

RECV from A

69

EXIT bar

21
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Tracing Pros & Cons

= Tracing advantages

= Event traces preserve the temporal and spatial relationships among individual events
(= context)
= Allows reconstruction of dynamic application behaviour on any required level of abstraction
= Most general measurement technique
= Profile data can be reconstructed from event traces

= Disadvantages

= Traces can very quickly become extremely large
= Writing events to file at runtime may causes perturbation

IHPCSS17 - PERFORMANCE ANALYSIS AND OPTIMIZATION 22
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Classification of measurement techniques

= How are performance measurements triggered?
= Sampling
= Code instrumentation

= How is performance data recorded?

= Profiling / Runtime summarization
= [racing

= How is performance data analyzed?
= Online
= Post mortem

IHPCSS17 - PERFORMANCE ANALYSIS AND OPTIMIZATION 23
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Online analysis

= Performance data is processed during measurement run
= Process-local profile aggregation
= Requires formalized knowledge about performance bottlenecks

= More sophisticated inter-process analysis using
= Piggyback” messages

= Hierarchical network of analysis agents

= Online analysis often involves application steering to interrupt and re-configure the
measurement

IHPCSS17 - PERFORMANCE ANALYSIS AND OPTIMIZATION 24
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Post-mortem analysis

s Performance data is stored at end of measurement run

= Data analysis is performed afterwards
= Automatic search for bottlenecks
= Visual trace analysis

= Calculation of statistics

IHPCSS17 - PERFORMANCE ANALYSIS AND OPTIMIZATION 25
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Example: Time-line visualization

. main
Global trace view

M foo
M bar
58| A |ENTER foo
60| B | ENTER bar
62| A |SENDtoB A —

Post-Mortem
64| A | EXIT foo _ >
68 | B |RECV from A Analysis o
69 | B | EXIT bar
I I I I I I I

58 60 62 64 66 68 70
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Trace visualizers
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Jumpshot (ANL) Process-local profile aggregation

= Free, basic MPI visualizer (routines, messages)
= SLOG-2 format

= MPE tracing + converters from TAU

Paraver (BSC)

= Free, extremely flexible and programmable visualizer
= PRV format

= Extrae tracing + converters from TAU
= Vampir (TUD)
= Commercial portable trace visualizer

= OTF2, format
= Intel trace collector and analyzer

= Commercial, Intel-only trace collection and visualizer

IHPCSS17 - PERFORMANCE ANALYSIS AND OPTIMIZATION
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Event Trace Visualization with Vampir

= Alternative and supplement to automatic analysis

= Show dynamic run-time behavior graphically at any
level of detail

» Provide statistics and performance metrics

= Timeline charts
= Show application activities and communication along a time axis

= Summary charts |
» Provide quantitative results for the currently selected time | moass
interval |

IHPCSS17 - PERFORMANCE ANALYSIS AND OPTIMIZATION 28
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Visualization of the NPB-MZ-MPI / BT trace

Trace View - fhome/frank/Traces/scorep_bt-mz_B_4x4_traceftraces.otf2* - Vampir
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“A picture is worth a 1000 words ..."

VAMPIR - Timeline

E@E VYAMPIR - Global Timeline

Process 0

19.0 m$ 19.2 ms 19.4 ms 19.6 ms feEEDd

Process 2

BMPI Fracess 3

. . Process 4
BApplication Pz 3

Process B
Process 7
Process 8
Process 9
Process
Process 1
Process 1
Process 1
Process 1
Process
Process
Process 1
Process
Process 1
Process
Process
Process
Process
Process
Process
Process
Process
Process
Process
Process
Process
Process
Process
Process
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Process
Process
Process
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Process
Process
Process
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Process
Process
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Process
Process
Process
Process
Process
Process

Process 0

ARREALALLL

Process 1

AR A A R R

Process 2

Process 3

EE SRS EAEEEERERR

Process 4

Process s

Process 6

Process 7

Process 8

Process 9

Process 10

Process 11

Process 12

Process 13

Process 14

Process 15

MPI ring example “Real world” example




VIRTUAL INSTITUTE - HIGH PRODUCTIVITY SUPERCOMPUTING

Automatic trace analysis

» Jdea
= Automatic search for patterns of inefficient behavior
» Classification of behavior & quantification of significance
= Identification of delays as root causes of inefficiencies

o Call
5 1 path
Low-level High-level = S
event trace result S L~
Locati>on

= Guaranteed to cover the entire event trace

= Quicker than manual/visual trace analysis
= Parallel replay analysis exploits available memory & processors to deliver scalability
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Scalasca Trace Tools: Objective

= Development of a scalable trace-based performance analysis toolset

for the most popular parallel programming paradigms
= Current focus: MPI, OpenMP, and POSIX threads

» Specifically targeting large-scale parallel applications
= Such as those running on IBM Blue Gene or Cray systems
with one million or more processes/threads

= | atest release:
= Scalasca v2.3.1 coordinated with Score-P v2.0.2 (May 2016)

IHPCSS17 - PERFORMANCE ANALYSIS AND OPTIMIZATION 32
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Scalasca Trace Tools features

= Open source, 3-clause BSD license

= Fairly portable

= IBM Blue Gene, Cray XT/XE/XK/XC, SGI Altix, Fujitsu FX10/100 & K computer,
Linux clusters (x86, Power, ARM), Intel Xeon Phi, ...

= Uses Score-P instrumenter & measurement libraries

= Scalasca v2 core package focuses on trace-based analyses

= Supports common data formats
» Reads event traces in OTF2 format
= Writes analysis reports in CUBE4 format

= Current limitations:

= Unable to handle traces
= With MPI thread level exceeding MPI_THREAD_FUNNELED
» Containing CUDA or SHMEM events, or OpenMP nested parallelism

= PAPI/rusage metrics for trace events are ignored

IHPCSS17 - PERFORMANCE ANALYSIS AND OPTIMIZATION 33
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Scalasca workflow

ey S e ———————— e EEEEEmEmm——— 1
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Measurement 1
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|
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HWC

\ 4

Instr.
target
application

1 Scalasca trace analysis

Local event Parallel wait- Wait-state
traces —» state search report -

vVYyyY
v

Instrumented Which problem? Where in the Which
executable P ' program? process?

Score-P
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Example: “"Late Sender” wait state

N
ol MPI Send MPI Send
2 ~ ~
S MPI Recv MPI Irecv - MPI Wait SR
< > > )
A time .
S MPI Isend MPI Wailt MPI TIsend MPI Wailt
5 ~ I
S MPI Recv MPI Irecv [ MPI Wait
T = S
time .

= Waiting time caused by a blocking receive operation posted earlier than the

corresponding send
= Applies to blocking as well as non-blocking communication

IHPCSS17 - PERFORMANCE ANALYSIS AND OPTIMIZATION 35
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Example: Critical path

foo foobar
S
S

foo Send bar foobar

time

Computation Communication _ Critical path

= Shows call paths and processes/threads that are responsible for the program’s

wall-clock runtime
= Identifies good optimization candidates and parallelization bottlenecks
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Example: Root-cause analysis

Send

Computation

Communication

Recv Send —

uoIeo0]

N

< Direct

Wait state
See
< Indirect >< Direct >

~
7

time

= Classifies wait states into direct and indirect (i.e., caused by other wait states)
= Jdentifies delays (excess computation/communication) as root causes of wait states

= Attributes wait states as delay costs

IHPCSS17 - PERFORMANCE ANALYSIS AND OPTIMIZATION
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Example: Root-cause analysis - CESM Sea Ice Module

m Cube 3.0 QT: Experiments/epik_trace_filtercice_D_T62g16.4096.120304-162028.topo.cube.gz

File Display Topology Help

Absolute v
Metric tree
&+ ] 0.00 Time f
£+ [ 1.83e5 Execution |
&+ [l 0.34 MPI

3.21e4 Synchronization '
=+ [] 0.00 Communication |
=+ [E 1.18e5 Point-to-point
] 1.74e5 Late Sender |
0.02 Late Receiver |
(O 1.06e5 Collective
(] 0.00 Init/Exit
L[] 0.00 Overhead |
— [ 2.73e10 Visits
&+ [l 2.17e6 Synchronizations
& [l 1.87e10 Communications |
&1 [l 1.91e13 Bytes transferred |
= [l 9.58e4 Computational imbalance
[
&
E

+ [l 2.82e5 Short-term delay costs |
+ [l 2.76e5 Delay costs
1 [ ] 0.00 Wait states (direct vs. indirect)
G+ [ 1.45e5 Direct wait time
[ 1.40e5 Indirect wait time |
- [ 2.85e5 Wait states (propagating vs. te |

Absolute v
Call tree | Flat view

[ ] 0.00 ice_comp_mct:ice_run_mct (0. 009 ~
[l 311.34 ice_comp_mct:ice_import_| r'r|
[l 5438.88 ice_diagnostics:init_mass_
4386.36 ice_step_mod::step_thermz |
[10.00 ice_step_mod::step_dynamics (|
Et [10.00 ice_dyn_evp:evp (0.00%)

1 [l 191.82 ice_boundary::ice_| halc |
[ 216.54 ice_grid: t2ugr|d_vecto |
[l 202.63 ice_boundary:ice_halc
[ ] 0.00 ice_boundary:ice_haloup
L ] 2.50e4 MPI_Waitall |
= [l 353.54 ice_grid::u2tgrid_ vecto |
G [E 1.16e4 ice_transport_driver: trans
& [l 1711.84 ice_state::bound_state |
o1 (B 6511.58 cice_runmod::coupling_pref u
=+ [] 0.00 ice_history:ice_write_hist (0.00"
B [ ] 0.00 ice_history_write::icecdf (0.0
11.64 ice_broadcast::broadcas
1442 53 ice_pio:ice_pio_init
3.34 ice_pio:ice_pio_initdecol
281.19 ice_pio:ice_pio_initde:
252.77 nf_mod::pio_def_dim

Peer distribution

Topology 0 Topology 1

Virtual topology | < »

&+ [l 201.86 Critical path profile 352.10 nf_mod::def_var_md u

= [l 6.08e5 Performance impact 123.11 nf_mod::ing_varid_varc . s
[ - T Y. TS [V [y S e P - <>

Ll E | £r ||[{] T — <>

0.00 1.45e5 (50.86%) 2.85e5 2.50e4 (17.26%) 1.45e5((0.00 0.00 100.00

| -
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Example: Root-cause analysis - CESM Sea Ice Module

m Cube 3.0 QT: Experiments/epik_trace_filtercice_D_T62g16.4096.120304-162028.topo.cube.gz

File Display Topology Help

Absolute v
Metric tree
&+ ] 0.00 Time f
£+ [ 1.83e5 Execution |
&+ [l 0.34 MPI

3.21e4 Synchronization '
=+ [] 0.00 Communication |
=+ [E 1.18e5 Point-to-point
] 1.74e5 Late Sender |
0.02 Late Receiver |
(O 1.06e5 Collective
(] 0.00 Init/Exit
L[] 0.00 Overhead |
— [ 2.73e10 Visits
&+ [l 2.17e6 Synchronizations
& [l 1.87e10 Communications |
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Example: Root-cause analysis - CESM Sea Ice Module

m Cube 3.0 QT: Experiments/epik_trace_filtercice_D_T62g16.4096.120304-162028.topo.cube.gz
File Display Topology Help
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Typical performance analysis procedure

= Do I have a performance problem at all?
= Time / speedup / scalability measurements
= What is the key bottleneck (computation / communication)?
= MPI / OpenMP / flat profiling
= Where is the key bottleneck?
= Call-path profiling, detailed basic block profiling
= Why is it there?
= Hardware counter analysis, trace selected parts to keep trace size manageable

= Does the code have scalability problems?
= Load imbalance analysis, compare profiles at various sizes function-by-function
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