VWV PSC

PITTSBURGH SUPERCOMPUTING CENTER

Performance Engineering
of Parallel Applications

Philip Blood
Pittsburgh Supercomputing Center
blood@psc.edu

International Summer School on HPC Challenges in Computational Sciences
Boulder, CO

© 2017 Pittsburgh Supercomputing Center June 29, 2017

Acknowledgment

e Christian Feld, Julich Supercomputing Centre

 Virtual Institute - High Productivity
Supercomputing (VI-HPS)

 Raghu Reddy

4
© 2017 Pittsburgh Supercomputing Center

Outline for Performance Sessions

e Thursday:
— Introduction to performance engineering (Phil Blood)

— Performance profiling of scientific application with Score-P (Christian
Feld)

— Analysis of performance profiles with TAU Paraprof (Phil Blood)

* Friday:
— Trace measurement using Score-P (Christian Feld)
— Trace analysis with Scalasca (Christian Feld)

»
© 2017 Pittsburgh Supercomputing Center

Fitting algorithms to hardware...and vice versa

Molecular dynamics simulations on
Application Specific Integrated Circuit (ASIC)

DE Shaw Research Ivaylo Ivanov, Andrew McCammon, UCSD

—
© 2017 Pittsburgh Supercomputing Center ‘]\ P S ‘

PITTSBURGH SUPERCOMPUTING CENTER

Code Development and Optimization Process

Choose -- Y | s
aigorithm 9 mplement) Analyze) Optimize

3 B

* Choice of algorithm most important consideration
(serial and parallel)

e Highly scalable codes must be designed to be
scalable from the beginning (or rewritten)!

* Analysis may reveal need for new algorithm or
completely different implementation rather than
optimization

* Focus of this lecture: using tools to assess parallel
performance

»
© 2017 Pittsburgh Supercomputing Center

w HPS VARTUALINSTITUTE ~ HIGH PRODUCTIVITY. SUPERCOMPUTING

Performance engineering workflow

Measurement

T,

= Collection of performance
data

* Aggregation of

soerformance data

(. :
*Prepare application with
symbols
e Insert extra code
(probes/hooks)
_ Preparation
e Optimization

e Modifications intended to
eliminate/reduce
. performance problem

Analysis

e Calculation of metrics
= ldentification of

Slide courtesy VI-HPS

A little background...

T EE———— T E—E———————————— .,
f—
© 2017 Pittsburgh Supercomputing Center

Hardware Counters

* Counters: set of registers that count processor
events, like floating point operations, or cycles

« Opteron “Istanbul” had 6 counter registers, so 6
types of events could be monitored simultaneously

e PAPI: Performance API

o Standard API for accessing hardware performance
counters

« Enable mapping of code to underlying architecture
« Facilitates compiler optimizations and hand tuning

o Seeks to guide compiler improvements and
architecture development to relieve common
bottlenecks

»
© 2017 Pittsburgh Supercomputing Center

Features of PAPI

o Portabl_e: uses same routines to access counters across
all architectures

« High-level interface

— Using predefined standard events the same source code can
access similar counters across various architectures without
modification.

— papi_avall
e Low-level interface

— Provides access to all machine specific counters (requires
source code modification)

— Increased efficiency and flexibility
— papi_native_avalil
e Third-party tools
— TAU, HPC Toolkit
e Might require linux kernel patch
— Direct support in linux kernels 2 2.6.31 (use latest PAPI)

4
© 2017 Pittsburgh Supercomputing Center

Measurement Technigues

 When Is measurement triggered?

— Sampling (indirect, external, low overhead)
* interrupts, hardware counter overflow, ...

— Instrumentation (direct, internal, high overhead)
* through code modification

« How are data recorded?
— Profiling
» summarizes performance data during execution

» per process / thread and organized with respect to
context

— Tracing
 trace record with performance data and timestamp
» per process / thread

»
© 2017 Pittsburgh Supercomputing Center

Inclusive and Exclusive Profiles

* Performance with respect to code regions
e EXclusive measurements for region only
* |nclusive measurements includes child regions

int foo()

\

oo

© 2017 Pittsburgh Supercomputing Center

PITTSBURGH SUPERCOMPUTING CENTER

Applying Performance Tools to Improve Parallel
Performance of the UNRES MD code

The UNRES molecular dynamics (MD) code utilizes a carefully-derived
mesoscopic protein force field to study and predict protein folding pathways
by means of molecular dynamics simulations.

http://www.chem.cornell.edu/has5/ http://cbsu.tc.cornell.edu/software/protarch/index.htm

© 2017 Pittsburgh Supercomputing Center ‘H') P S ‘

http://cbsu.tc.cornell.edu/software/protarch/index.htm
http://www.chem.cornell.edu/has5/

Structure of UNRES

e TwoO Issues
— Master/Worker code

if (myrank==0)

MD=>...=>EELEC
else

ERGASTULUM=>...=>EELEC
endif

— Significant startup time: must remove from profiling
o Setup time: 300 sec
« MD Time: 1 sec/step

* Only MD time important for production runs of
millions of steps

e Could run for 30,000 steps to amortize startup!

»
© 2017 Pittsburgh Supercomputing Center

Performance Engineering: Procedure

e Serial

Assess overall serial performance (percent of peak)
Identify functions where code spends most time
Instrument those functions

Measure code performance using hardware counters

Identify inefficient regions of source code and cause of
inefficiencies

 Parallel

Assess overall parallel performance (scaling)

Identify functions where code spends most time (this may
change at high core counts)

Instrument those functions
Identify load balancing issues, serial regions

Identify communication bottlenecks--use tracing to help
identify cause and effect

»
© 2017 Pittsburgh Supercomputing Center

Is There a Performance Problem?

 What does it mean for a code to perform “poorly”?

— Depends on the work being done
— Traditional measure: Percentage of peak performance

— What performance should | expect with my algorithm?

— Roofline models: establish performance bounds for various
numerical methods

— Arithmetic Intensity: Ratio of total floating-point operations (FLOPS)
to total data movement (bytes)

0.1-1.0 flops per byte Typically < 2 flops per byte O(10) flops per byte
A A A

i Y i Y "

,

ity

SphMv
BLAST .2 Particle
. Methods
Stencils (FDEs) s, ce
Lattice Boltzmann Spectral Methods Linear Algebra
N Methods N b (BLAS3) P
h h "
o) O log(M)) O M)

Source: http://crd.Ibl.gov/departments/computer-science/PAR/research/roofline/

»
© 2017 Pittsburgh Supercomputing Center

Detecting Performance Problems

e Serial Performance: Fraction of Peak

— 20% peak (overall) is usually decent; After that you decide
how much effort it is worth

— Theoretical FLOP/sec peak = FLOP/cycle * cycles/sec
— 80:20 rule

« Parallel Performance: Scalability

— Does run time decrease by 2x when | use 2x cores? (total
work remains constant)

o Strong scalability

— Does run time remain the same when | keep the amount of
work per core the same?

 Weak scalability

»
© 2017 Pittsburgh Supercomputing Center

Use a Sampling Tool for Initial Performance
Check

e HPC Toolkit

— Powerful sampling based tool
— No recompilation necessary
— Function level information available

o PerfExpert: TACC-developed automated
performance analysis built on HPC Toolkit

 Worth checking out:
http://hpctoolkit.org/
http.//www.tacc.utexas.edu/perfexpert

»
© 2017 Pittsburgh Supercomputing Center

http://hpctoolkit.org/
http://www.tacc.utexas.edu/perfexpert

UNRES: Serial Performance

Processor and System Information

Node CPUs : 768

Vendor . Intel

Family . Itanium 2

Clock (MHz) : 1669.001

Statistics

Floating point operations per cycCle......cccooviiiiiiiiiiinnennnnn. 0.597
MFLOPS (CYCIES)..cvuiiiiiiiiiee e 995.801
CPU time (SECONAS)..cccuiiiiiieiiiieeee e 1404.675

Theoretical peak on Itanium2: 4 FLOP/cycle *1669 MHz = 6676 MFLOPS

UNRES getting 15% of peak--needs serial optimization on Itanium

Much better on x86_64: 1720 MFLOPS, 33% peak

 Make sure compiler is inlining (-ipo needed for ifort, —Minline=reshape needed for

pgfa0)

—
© 2017 Pittsburgh Supercomputing Center V‘H\ P S ‘

UNRES: Parallel Performance
1024 UNRES Performance: Cray XT3

512 /

256 /

128 /

|

timesteps/sec
= w
N N

N

/
2
1 T T T T T T T T
—l o <<t o0 (Yo} (V] << o0 (o]
i (qp] (Vo] (@] LN
— (@]
Cores

© 2017 Pittsburgh Supercomputing Center

——Bigben

——|deal

PITTSBURGH SUPERCOMPUTING CENTER

Performance Engineering: Procedure

e Serial

Assess overall serial performance (percent of peak)
|dentify functions where code spends most time
Instrument those functions

Measure code performance using hardware counters

Identify inefficient regions of source code and cause of
inefficiencies

 Parallel

Assess overall parallel performance (scaling)

Identify functions where code spends most time (this may
change at high core counts)

Instrument those functions
Identify load balancing issues, serial regions

Identify communication bottlenecks--use tracing to help
identify cause and effect

»
© 2017 Pittsburgh Supercomputing Center

Which Functions are Important?

e Usually a handful of functions account for
90% of the execution time

 Make sure you are measuring the
production part of your code

e For parallel apps, measure at high core
counts — insignificant functions become
significant!

»
© 2017 Pittsburgh Supercomputing Center

Contributions of Functions

Function Summary

Samples Self % Total % Function

154346 76.99% 76.99% pc_jac2d_blk3

14506 7.24% 84.23% cg3_blk

10185 5.08% 89.31% matxvec2d_blk3
6937 3.46% 92.77% __ kmp__ X86_ __pause
4711 2.35% 95.12% _ kmp_wait_sleep
3042 1.52% 96.64% dot_prod2d_blk3
2366 1.18% 97.82% add_exchange2d blk3

Function:File:Line Summary

Samples Self % Total % Function:File:Line

39063 19.49% 19.49% pc_jac2d _blk3:/home/rkufrin/apps/aspcg/pc_jac2d blk3.¥:20
24134 12.04% 31.52% pc_jac2d_blk3:/home/rkufrin/apps/aspcg/pc_jac2d blk3.f:19
15626 7.79% 39.32% pc_jac2d_blk3:/home/rkufrin/apps/aspcg/pc_jac2d blk3.f:21
15028 7.50% 46.82% pc_jac2d blk3:/home/rkufrin/apps/aspcg/pc_jac2d blk3.f:33
13878 6.92% 53.74% pc_jac2d_blk3:/home/rkufrin/apps/aspcg/pc_jac2d blk3.f:24
11880 5.93% 59.66% pc_jac2d_blk3:/home/rkufrin/apps/aspcg/pc_jac2d blk3.f:31
8896 4._.44% 64.10% pc_jac2d_blk3:/home/rkufrin/apps/aspcg/pc_jac2d blk3.f:22
7863 3.92% 68.02% matxvec2d blk3:/home/rkufrin/apps/aspcg/matxvec2d blk3.f:19
7145 3.56% 71.59% pc_jac2d_blk3:/home/rkufrin/apps/aspcg/pc_jac2d blk3.f:32

© 2017 Pittsburgh Supercomputing Center ‘H\ P S ‘

UNRES Function Summary

Function Summary

Total % Function

2905589
827023
634107
247353
220089
183492
144851
132058

66182
39495
38111

Self %

51.98%
14.79%
11.34%
4.42%
3.94%
3.28%
2.59%
2.36%
1.18%
0.71%
0.68%

51.98%
66.77%
78.11%
82.54%
86.48%
89.76%
92.35%
94.71%
95.89%
96.60%
97.28%

eelecij

egb
setup_md_matrices
escp

etrbk3

einvit

banach
ginv_mult
multibody hb
etred3

eelec

e Short runs include
some startup
functions amongst
top functions

* To eliminate this
perform a full
production run with
sampling tool

« Can use sampling
tools during
production runs due
to low overhead—
minimal impact on
application
performance

© 2017 Pittsburgh Supercomputing Center

Performance Engineering: Procedure

e Serial

Assess overall serial performance (percent of peak)
Identify functions where code spends most time
Instrument those functions

Measure code performance using hardware counters

Identify inefficient regions of source code and cause of
inefficiencies

 Parallel

Assess overall parallel performance (scaling)

Identify functions where code spends most time (this may
change at high core counts)

Instrument those functions
Identify load balancing issues, serial regions

Identify communication bottlenecks--use tracing to help
identify cause and effect

»
© 2017 Pittsburgh Supercomputing Center

Digging Deeper: Instrument Key Functions

e Instrumentation: Insert functions into source
code to measure performance

* Pro: Gives precise information about where
things happen

e Con: High overhead and perturbation of
application performance

e Thus essential to only instrument important
functions

»
© 2017 Pittsburgh Supercomputing Center

Choose a tool: there are many!

* VI-HPS maintains a list and tool guide
— http://www.vi-hps.org/tools/

 Will use TAU as an example in this
presentation

* Focus on the general principles rather than
specific detalls

e Christian Feld will take you through specific
details using Score-P and Scalasca tools
during hands-on session

»
© 2017 Pittsburgh Supercomputing Center

http://www.vi-hps.org/tools/

TAU: Tuning and Analysis Utilities

« Useful for a more detailed analysis
— Routine level
— Loop level
— Performance counters
— Communication performance

* A more sophisticated tool

— Performance analysis of Fortran, C, C++, Java, and
Python

— Portable: Tested on all major platforms
— Steeper learning curve
http:.//www.cs.uoregon.edu/research/tau/home.php

»
© 2017 Pittsburgh Supercomputing Center

http://www.cs.uoregon.edu/research/tau/home.php

General Instructions for TAU

o Use a TAU Makefile stub (even if you don’t use
makefiles for your compilation)

 Use TAU scripts for compiling (tau_cc.sh tau_f90.sh)
 Example (most basic usage):

module load tau

setenv TAU_MAKEFILE <path>/Makefile.tau-papi-pdt-pgi
setenv TAU_OPTIONS "-optVerbose -optKeepFiles*
tau_f90.sh -o hello hello_mpi.fo0

e Excellent “Cheat Sheet”!

— Everything you need to know?! (AImost)

— http://www.cs.uoregon.edu/research/tau/tau_releases/tau-
2.20.1/html/TAU-quickref.pdf

»
© 2017 Pittsburgh Supercomputing Center

Using TAU with Makefiles

o Fairly simple to use with well written makefiles:

setenv TAU_MAKEFILE <path>/Makefile.tau-papi-mpi-pdt-pgi
setenv TAU_OPTIONS "-optVerbose —optKeepFiles —optPreProcess”
make FC=tau_f90.sh

— run code as normal
— run pprof (text) or paraprof (GUI) to get results

— paraprof --pack file.ppk (packs all of the profile files into
one file, easy to copy back to local workstation)

« Example scenarios

— Typically you can do cut and paste from here:
http://www.cs.uoregon.edu/research/tau/docs/scenario/index.html

»
© 2017 Pittsburgh Supercomputing Center

http://www.cs.uoregon.edu/research/tau/docs/scenario/index.html

Tiny Routines: High Overhead

double precision function scalar(u,v)

double precision u(3),v(3)
scalar=u(1)*v(1)+u(2)*v(2)+u(3)*v(3)

return

end

double precision function scalar(u,v)

double precision u(3),v(3)
call TAU_PROFILE_TIMER(profiler, 'SCALAR [...]")
call TAU_PROFILE_START(profiler)
scalar=u(1)*v(1)+u(2)*v(2)+u(3)*v(3)
call TAU_PROFILE_STOP(profiler)

return
call TAU_PROFILE_STOP(profiler)

end

—
© 2017 Pittsburgh Supercomputing Center \HS P S ‘

Reducing Overhead

ParaProf Profile Visualization Tool

© | TAU: ParaProf: C:\Users\rreddy.PSC\ AppData\ Local\ Temp'\tau-0004-unres-tau-c... | — | = |y | OVErhead (time in sec):

File Options Windows Help

Metric: TIME
Value: Exclusive

Std. Dev. e e 002 [Seeessss 0 [/

Mean | s 20 O eesssss e (][
node 0 | | —— i
hode 1 | e s [[[l
hode 2 | e e [[Tl
hode 3 | el 00000000 e [(]

EELEC [{energy_p_new_barrier.pp.F} {2204 723729}
Exclusive TIME: 281.118 seconds

Inclusive TIME: 285.669 seconds

Calls: 501.0

SubCalls: 399725.0

Click on one of these labels to
reveal detailed function info

© 2017 Pittsburgh Supercomputing Center

MD steps base:
51.4 seconds

MD steps with TAU:
315 seconds

Must reduce overhead to
get meaningful results:

* In paraprof go to “File”
and select “Create
Selective Instrumentation
File”

WV PSC

Selective Instrumentation File

TAU automatically generates a list of routines that
you can save to a selective instrumentation file

T TAL: ParaProf: Selective Instrumentation File Generator = | | |
Output File: |C\Program Files\Mozilla Firefox/select.tay| | I:l

Exclude Throttled Routines

Exclude Lightweight Routines

~ Lightweight Routine Exclusion Rules

Microseconds per call: |‘1 0 |

Mumber of calls: [1oooo0 |

~Excluded Routines

WwDD_HB_COMNTACT
ILPHA

IWRCOS

BETA

D AXPY

DooT

DIsST

EELECI]
EHBCORR

GCOMNT

MATMATZ

MATWVECZ
PROGRAM == ERGASTULUM ==ETOTAL == EELEC == EELECI]
SCALAR

SCALARZ
SC_ANMGULAR
SC_GRAD
TRAMNSPOSEZ
UMNORMDERIV
NMECPR

| 4
© 2017 Pittsburgh Supercomputing Center

PITTSBURGH SUPERCOMPUTING CENTER

Selective Instrumentation File

« Automatically generated file essentially eliminates
overhead in instrumented UNRES

* |In addition to eliminating overhead, use this to
specify:
— Files to include/exclude
— Routines to include/exclude
— Directives for loop instrumentation
— Phase definitions

o Specify the file in TAU_OPTIONS and recompile:
setenv TAU_OPTIONS "-optVerbose —optKeepFiles

—optPreProcess -optTauSelectFile=select .tau®

* http://www.cs.uoregon.edu/research/tau/docs/newguide/bk03ch01.html

»
© 2017 Pittsburgh Supercomputing Center

Getting a Call Path with TAU

« Why do | need this?

— To optimize a routine, you often need to know what is
above and below it

— e.g. Determine which routines make significant MPI
calls

— Helps with defining phases: stages of execution within
the code that you are interested In

* To get callpath info, do the following at runtime:
setenv TAU _CALLPATH 1 (this enables callpath)
setenv TAU _CALLPATH DEPTH 5 (defines depth)

e Higher depth introduces more overhead in TAU

»
© 2017 Pittsburgh Supercomputing Center

Getting Call Path Information

T TAL: ParaProf: C\Users\rreddy.PSC\AppDataLocal\ Temphtau-0004-unres-tau-cp-414541-4. ppk
File Options Windows Help

Metric: TIME
Walue: Exclusive

Stel. Dy,
Mean

node) i o [l Tl T

n 1 A
ni_Show Thread Bar Chart
r Right click for options e

Show Thread Statistics Table

Show Thread Call Graph

Show Thread Call Path Relations
Show User Event Bar Chart

Show User Event Statistics Window

Show Context Event Window
Show Metadata for Thread
Add Thread to Comparison Window

(= |ErEs

© 2017 Pittsburgh Supercomputing Center

Right click
name of node
and select
“Show Thread
Call Graph”

WPSC

|solate regions of code execution

« Eliminated overhead, now we need to deal with startup
time:
— Choose a region of the code of interest: e.g. the main
computational kernel

— Determine where in the code that region begins and ends
(call path can be helpful)

— Then put something like this in selective instrumentation
file:

static phase name="fool bar* file="foo.c" line=26 to line=27

— Recompile and rerun

»
© 2017 Pittsburgh Supercomputing Center

Key UNRES Functions in TAU
(with Startup Time)

Metric: GET_TIME_OF_DAY
Value: Exclusive
Units: seconds
TO get thIS View, |€ft C“Ck 3g4.929 [I:lll SETUP_MD_MATRICES
; 21.167 BANAI
on Mean, Max, Min, or ol E S
10.294 BANACH
Node labels on left hand e Du kg
: : 597 [] EELEC
side of main Paraprof 0 H EELC
i 1917 | ECB
WIﬂdOW 1193 | ELAL
0.953 | GINV_MULT
0.742 | ESCP
0.653 | MPI_Barrierg
0.359 | MPIL_wyaitall)
0.344 | SUM_GRADIENT
0.305 | MPI_Reduced
0.223 | INT_FROM_CARTI
0.208 | MULTIBODY_HB
0.148 | MPLAllreducen
0.142 | ZEROGRAD
0134 | SET_MATRICES
0127 | INTCARTDERIY
0117 | ADD_INT_FROM
0113 | YEC_AND_DERIV
0108 | MPI_Bcast)
0108 | STATOUT
0.081 | MPI_Scatter
0.07 | READPDE
0.057 | OPEMUNITS
0.055 | INIT_INT_TABLE
0.055 | ADD_HB_COMTACT
0.052 | ETURM4
0.049 | ETOR_D
0.048 | EBEND
0.044 | EQLRAT
0.04 | INT_TO_CART

—
© 2017 Pittsburgh Supercomputing Center ‘]\ P S ‘

PITTSBURGH SUPERCOMPUTING CENTER

Key UNRES Functions (MD Time Only)

Phase: PHASE_MD
Metric: TIME

Walue: Exclusive
Units: seconds

§.109

0518
0.36
0.261
0.225
0164
0182
0.148
0137
0.135
0133
0.094
0.o54
0.05
n.o44
0.o3a
0.035
0.0zy
0.026
n.oz:
n.o1e
0.7
0.014
0.0o1
0.008
0.003

© 2017 Pittsburgh Supercomputing Center

0
0
0
0
0
0
i
I
u
l
]
|
|
|
|
|
|
|
|
|
|

EELEC [fenergy_p_new_barrier.pp {2204 72372 9]

1808 [] EGEHenergy_p_new barrerpp F1208 713509
1.062 s GIMY_MULT Elagrangian_lesvng.pp FH 462, 7 (561,91

0.730 s ESCF [energy_p_new harrierpp FH 3382, 7H 349487

L]

=
=
|

MPI_Barrier()

SUM_GRADIEMT [enerdy_p_new_barrierpp FH{417 FH721,9Y
MULTIBODY_HE [energy_p_new_barrierpp Fi{4622 7 H{4824 9Y
INT_FROM_CART [checkder_p.pp Fi{483 75519

ZEROGRAD [[gradient_p.pp.F1{319,7 {387 9}

SET_MATRICES [{fenergy_p_new_barrier pp FH{2004 72202 9]
MPI_Reduced

MPL_Allreduced

MP1_Waitall D

YEC _ANMD_DERI fenergy_p_new _barrier.pp FH{17EE,7-11918,97
MP1_Brasti

ETOR_D fenergy_p_new_barrier pp FH{4407 714472 91

EBEMD [energy_p_new_barrierpp FH{3741 7H3926,91

ETURMA fenergy_p_new _harrierpp P} 3079 73252 81
MPI_Scatterd)

ADD_HB_COMNTACT [eneray_p_new_barrier.pp FH{4926 7H 4981 97
MPI_lsendd

ETURM3 fenergy_p_new_barrier pp FH{2979,7-{3077,9]]

ESC [energy_p_new _barrier.pp FH{3929 714195 9]
CHAIMBUILD_CART [intcartderiv.pp F1{273,7H331,9)

MPI_lrecyv()

PHASE_MD

ETOR [energy_p_new _barrierpp FH{4314 7H4405 9]
ETOTAL fenergy_p_new_harrierpp F3{1, 7306 9]
INTCARTDER Fintcartderiv.pp F3{1,7H{113,9)]

NV PSC

PITTSBURGH SUPERCOMPUTING CENTER

Performance Engineering: Procedure

e Serial

Assess overall serial performance (percent of peak)
Identify functions where code spends most time
Instrument those functions

Measure code performance using hardware counters

Identify inefficient regions of source code and cause of
inefficiencies

 Parallel

Assess overall parallel performance (scaling)

Identify functions where code spends most time (this may
change at high core counts)

Instrument those functions
Identify load balancing issues, serial regions

Identify communication bottlenecks--use tracing to help
identify cause and effect

»
© 2017 Pittsburgh Supercomputing Center

Detecting Serial Performance Issues

 ldentify hardware performance counters of interest
— papi_avall
— papi_native_avall
— Run these commands on compute nodes!

 Run TAU (perhaps isolating regions of interest)

o Specify PAPI hardware counters at run time

setenv TAU METRICS GET_TIME_OF_DAY:PAP|_FP_OPS:PAPI_TOT_CYC

« Be careful! Definition (and accuracy) of PAPI
hardware counter presets can vary between
architectures

| 4
© 2017 Pittsburgh Supercomputing Center

Create a Derived Metric in Paraprof Manager

T TAU: ParaProf Manager = =
File Options Help
|@ Applications TrialField Value

¢ [Standard Applications

‘|Name

© 2017 Pittsburgh Supercomputing Center

CAUsers\Philip\Desktop\jac... |~
9 [Default App §§ Application 1D 0
¢ [Default Exp Experiment ID 0
¢ @ C:\Users\Philip\Desktop\jacobi_tau.ppk A{Trnal D 0 =
@ PAPI_FP_OPS :|CPU Cores 8
@ PAPI_ L2 DCM ZlcPuU MHz 2701.000
- |_|N|,_,|;(TTI'-.-'IEF{S §§ CPU Type Intel(R) Xeon(R) CPU E5-26... —
@ PAPI TOT CYC :[CPU vendor Genuinelntel
@ PAPI L2 DCA lcwp fhome1/00283tgd55546/nt...
o “|Cache Size 20480 KB
:|command Line jacobi_tau
§§ Executable /nome1/00283gd55546/ntl...
:[File Type Index 0
§§ File Type Mame ParaProf Packed Profile
§§ Hostname ch57-804 stampede tacc.ut...
#|Local Time 2013-06-24T22:09:30-05:00
§§ MPI! Processor Name cH57-804 stampede tacc.ut...
:[Memory Size 32836168 KB
Mode Mame co57-804.stampede taccut.. |+
Expression: Clear
+ - X | = {

NV PSC

PITTSBURGH SUPERCOMPUTING CENTER

Perf of EELEC (peak is 2)

T TAL: ParaProf: n,c,t 0,00 - CAUsers\rreddy. PSCyAppDatalLocalh Tempitau-0004-unres-tau-phas... | = = | [=ES-]
File Options Windows Help

Phase: PHASE_ETOTAL Go to: Paraprof
Metric: PAPI_FP_OPS / PAPI_TOT_CYC
value: Exclusive manager

Units: counts

Options->"Show

nese] ETOR_D [energy_p_new_barrier pp F1{4407, 7447291 | derived metrics
0.64 | | EBERD Henergy_p_new _harrier.pp . F1{3741 7H{3926,3Y "
nE1s e ETOR Keneray_p_new_barrier.pp. F1{4314,71-{4405,9] panel
050 NN EELEC Henergy_p_new_barrier.pp F} {2204, 7H{2372,9}]

055 | | EGE Kenergy_p_new_barrier.pp.F1{1208,7H{1350,9Y
0462] E 1 ARD_ DERN [energy_p_new barrier.pp. Fi{1 7667

A (Y ESC Henergy_p_new_barrier.pp.F}{3929,7+{4195,9}]

0.322 || ESCFEF Henergy_p_new_barrier.pp FY {3382 713494, 9Y
0248 oo | SET_MATRICES Fenergy_p_new_barrierpp FH{2004, 7+
0177] EBORMD fenergy_p_new_barrier.pp.FH{3663,7-{3739,9]
o028 [] MULTIBODY _HE [enerdgy_p_new _barrier.pp.F1{4622 7+
SUNM_EMERGY Henergy_p_new_barrier.pp. FH{308, 741

i
0.01 | PHASE_ETOTAL
o003 | EDIS fenergy_p_new _barrierpp F} {3496 F-{3873,9}
0.002 | MPI_Bcast)
0.001 | MPI_Reduced
SA9E-4 | MPI_Irecvd
1.7E-5 | MPI_waitallg
1.6E-6 | MPI_Barrierd
P Il [»

o—
© 2017 Pittsburgh Supercomputing Center \H\ P S ‘

PITTSBURGH SUPERCOMPUTING CENTER

Performance Engineering: Procedure

e Serial

Assess overall serial performance (percent of peak)
Identify functions where code spends most time
Instrument those functions

Measure code performance using hardware counters

|dentify inefficient regions of source code and cause of
inefficiencies

 Parallel

Assess overall parallel performance (scaling)

Identify functions where code spends most time (this may
change at high core counts)

Instrument those functions
Identify load balancing issues, serial regions

Identify communication bottlenecks--use tracing to help
identify cause and effect

»
© 2017 Pittsburgh Supercomputing Center

Do compiler optimization first!
EELEC — After forcing inlining with compiler

T TALL ParaProf: n,c,t0,0,0 - Ch\Users\rreddy. PSCuAppDatatLocalTermpitau-0004-unres-reshape2-...| = || & |[=5=]
File ©Options Windows Help

Phase: PHASE_ETOTAL

Metric: PAPI_FP_OPS / PARPI_TOT_CY(C
Value: Exclusive

nits: counts

0655 | ETOR_D Kenergy_p_new_harrier.pp F1 {4407, 7-{4472,9

0654 | | EBEMD [energy_p_new_barrierpp FH{3741,71-{3926,9Y
0E22 . ETOR Fenergy_p_new_barrier.pp F{4314,7-{4405,8]]
055 | | EGE fenergy_p_new _barrier.pp F1{1208,71-{12350,91

0.495 e “EC_AMND_ DERIV [energy_p_new barrierpp.F1{1766,7
0457 ey ESC Henergy_p_new barrierpp.F1{3929,7+-{4195,9Y
0.232 [ESCFP [energy_p_new _barrierpp FY{3382, T {3494 91

0222]| SET_MATRICES Fenerdy_p_new barrierpp. Fr{2004, 7+

018] EBOMD Fenergy_p_new _barrierpp. F1{3663,FH{3739,9Y

0108 [] MULTIEQDY _HE [energy_p_new barrierpp F1{4622 7

SUM_ERERGY [enerdy_p_new _barrier.pp. FH{308, 7 {41

i

0.01 | PHASE_ETOTAL

0.002 | EDIS Fenergy_p_new_barrier.pp F1{3496 7 3573,9]
0.002 | MPI_Beastd

0.001 | MPI_Reduced

9.4E-4 | MPIL_Irecvd

1.5E-5 | MPI_‘wWaitallo

1.8E-6 | MPI_Barrierd

1| Il | »

[
© 2017 Pittsburgh Supercomputing Center ‘H\ P S ‘

PITTSBURGH SUPERCOMPUTING CENTER

Further Info on Serial Optimization

e Tools help you find issues, areas of code to
focus on — solving issues Is application and
hardware specific

e (Good resource on techniques for serial
optimization:

— “Performance Optimization of Numerically Intensive
Codes” Stefan Goedecker, Adolfy Hoisie, SIAM, 2001.

— “Introduction to High Performance Computing for
Scientists and Engineers”, Georg Hager, Gerhard Wellein,
CRC Press, 2010.

— ClI-Tutor course: “Performance Tuning for Clusters”

httE://ci—tutor. ncsa.illinois.edu/
© 2017 Pittsburgh Supercomputing Center ‘HS. P S C

Performance Engineering: Procedure

e Serial

Assess overall serial performance (percent of peak)
Identify functions where code spends most time
Instrument those functions

Measure code performance using hardware counters

Identify inefficient regions of source code and cause of
inefficiencies

 Parallel

Assess overall parallel performance (scaling)

Identify functions where code spends most time (this may
change at high core counts)

Instrument those functions
Identify load balancing issues, serial regions

Identify communication bottlenecks--use tracing to help
identify cause and effect

»
© 2017 Pittsburgh Supercomputing Center

TAU Recipe #1: Detecting Serial Bottlenecks

* To identify scaling bottlenecks, do the following for each run
In a scaling study (e.g. 2-64 cores):

1) In Paraprof manager right-click “Default Exp” and
select “Add Trial”. Find packed profile file and add it.

2) If you defined a phase, from main paraprof window
select: Windows -> Function Legend-> Filter-
>Advanced Filtering

3) Type in the name of the phase you defined, and click
‘Apply’
4) Return to Paraprof manager, right-click the name of

the trial, and select “Add to Mean Comparison
Window”

 Compare functions across increasing core counts

»
© 2017 Pittsburgh Supercomputing Center

Serial Bottleneck Detection in UNRES:
Function Scaling (2-32 cores)

e IB.63 (A6 146%)
. . . 19.844 (28841 %) | PHASE_MD == PROGRAM
Examine tlmlngs of 10399(153;2?;(9%
functions in your region of T
. ARGy
Interest as you scale up 10282 26 977%) (W EELEC == PHASE_MD
|dentify functions that do L e B
not scale well or that need B M cCF < PHASE D
to be parallelized Rty
Flnd Communication 11.1?1.5589(41.32?%) |
. . 1.4258 (12.835%) = MPI_Send(== PHASE_MD
routines that are startlng to 00-_539?53((53-?3565;;3)1
dominate runtime o0s0
. . 4853 (53.64%) (E—
Caution: Looking at mean) R
. . 0.572i6.221% [
execution time may not -
reveal some Scaling Seri_al funCtion_ - 115352(1(10391222; E GINV_MULT == PHASE_MD
problems (load imbalance) ~ begins to dominate 4o 1o 0m
runtime 1.409 [

1,229 (87.25%) [
0927 (65.839%) [MPI_Algatherd <= PHASE_MD
0.8 (56.775%) H

| 4
© 2017 Pittsburgh Supercomputing Center
PITTSBURGH SUPERCOMPUTING CENTER

TAU Recipe #2: Detecting Parallel Load
Imbalance

« Examine timings of functions in your region of interest

— If you defined a phase, from paraprof window, right-
click on phase name and select: ‘Show profile for this
phase’

e To look at load imbalance in a particular function:

— Left-click on function name to look at timings across
all processors

e To look at load imbalance across all functions:
— In Paraprof window go to ‘Options’

— Uncheck ‘Normalize’ and ‘Stack Bars Together’
© 2017 Pittsburgh Supercomputing Center ‘HS. E $C

Load Imbalance Detection in UNRES

. _Only looking at time spent
Phase: PHASE_MD
Hetric: TIME in the important MD phase

Yalue: Exclusive

Std. Dev. [
Mean |(EE—
(EAgify—— ™

L, | | I~ [] i = WI il I H
L 2, |] I~ (] E =i 08 RN
L 3, I |] | [I O NI 0 I N
L, I | I | [I EH EQO 08 RN
L 5, L 1 L [[H H HI 0f I N
1, 0, L 1 L 1w [1 ©H ®=I 08 K00i8
L T, L 1 L [[] B ©H HI il I H
L, L 1 L | o [] B ©H EEH 08 I00i8
L, L 1 L] e [] B H HI 08 I IN
LT, L 1 [] = = =i 08 i00i8
AR RN = I | I (] i H I gf 1 [iN
N T2, I I [] = = =EE 08§ il0is
net13,0,0 I [o H NI of i IW
AR = L 1 [| = = =i O8 5§08
(AR RN = L] == = OE HI00E

* In this case: Developers unaware that chosen algorithm would
create load imbalance

* Reexamined available algorithms and found one with much better
load balance — also fewer floating point operations!

» Also parallelized serial function causing bottleneck

d

Observe multiple causes of |
Imbalance, as well as the serial
bottleneck

[
© 2017 Pittsburgh Supercomputing Center ‘H\ P S ‘

Major Serial Bottleneck and Load Imbalance in
UNRES Eliminated

Phase: PHASE_MD
Metric: TIME
Yalue: Exclusive

Std. Dev.
Mean

L, 0,0,
net1,00
nctz,00
n,ct3,00
nictdnn
ncta,0n0
nctg,0.0
nct¥,00
n,cta,00
n,c,t9,00
net10,00
nect11,00
net12,00
nct13,00
nct14,00
nct1a,00

* Due to 4x faster serial algorithm the balance
between computation and communication has
shifted — communication must be more efficient to
scale well

« Code then undergoes another round of profiling

@A ODUMIZALION

|
© 2017 Pittsburgh Supercomputing Center \H\ P S ‘

s | o s | e s s | s | e | e | e | e = e e | |
| e |

== ==y ==

LLLLAEERRIY
L UDODENID |
OO0
JEUREEERERER -

Next Iteration of Performance Engineering
with Optimized Code

Phase: PHASE_ETOTAL Phase: PHASE_ETOTAL
Mame: MULTIBODY_HB [{energy_p_new_barrier.pp.F} {4622 74824 9}] Mame: MPI_Barrier()
Metric Mame: TIME Metric Mame: TIME
Yalue: Exclusive Yalue: Exclusive
Units: seconds Units: seconds
25 | mean .40] mean
0127 [<t dev. 0147] std. dev.
0192 [1,Ct 0 0T T ———] n,c,10,0,0
0191 [— 1,c.11,0,0 B3 e ———] net100
0212 [— 1,0,12,0,0 0,593 [] n6t2,0,0
0.254 [— ,C,1 30,0 0537 [] 0,6 3,0,0
0.275 [—— ,Ct4,0,0 0512] n,ct4,0,0
0.166 |— Ct 0,0 0624 | ——————] 0, 5,0,0
0.256 | — N0, 6,0,0 0.] nipt6,0,0
0.260 [— 1,1 70,0 0.52¢] n,ct7,0,0
0.264 [— 1,C,! 00,0 0466] nete,0,0
027 e n,C,18,0,0 043] nete,0,0
0147 [— n,c{10,0,0 0545] n,c,410,0,0
0167 [— .ct11,0,0 0513] 1,5t 11,0,0
0.3 | n,ct12,0,0 0344] n,ct12,0,0
0171 [— n,ct13,0,0 0510] n,ct13,0,0
0.256 | — nC114,0,0 0444] nyet14,0,0
0,705 | — ', 1 15,0,0 0.035 B nct15,0,0

Load imbalance on one processor causing other processors to idle in MPI_Barrier

May need to change how data is distributed, or even change underlying algorithm.

But beware investing too much effort for minimal gain!

| 4
© 2017 Pittsburgh Supercomputing Center

PITTSBURGH SUPE

Use Call Path Information: MPI Calls

Metric: GET_TIME_COF_DAY
Yalue: Exclusive

frmdinrn Use call path information to
o s find routines from which key
5.635 | EELEC <= ETOTAL == ERGASTULUM <= PROGRAM
E— MPI calls e_lre m_ade. I_nclude
1782 [] EGBE «=ETOTAL <= ERGASTULUM <= PROGRAM these routines in trac|ng
0.032 [GINV_MULT .
0873 [__] GINV_MULT == ERGASTULUM == PROGRAM expenment_
0741 [mm ESCP
0694 ESCE == ETOTAL == ERGASTIILLIM == PROGEAM
0.54] MPI_Earrier
0.461 MPI_Barrier(== SUM_EMNERGY == ETOTAL == ERGASTULUM == PROGRAM

0,372 [] EELEC == ETOTAL == VELWERLET_STEF == WD == EXEC_MD == PROGRAM
0366 [SUM_GRADIENT
|

0.345 SUM_GRADIENT == ERGASTULUM == PROGRAM
0.272] MULTIEODY_HE
0.258 [MULTIEODY_HE == ETOTAL == ERGASTULUM == PROGRAM
0225 @ INT_FROM_CARTI
0.211 B INT_FROM_CART! == CHAINBUILD_CART == ERGASTULUM == PROGRAM
017 @ ZEROGRAD
0161 [l ZEROGRAD <= ERGASTULUM == PROGRAM To show source locations select:
0.153 B SET_MATRICES]
0148 [MPI_waitallg File -> Preferences
0.145 [] SET_MATRICES == EELEC == ETOTAL == ERGASTULUM == PROGRAM
0145 @ MPI_Reduce(
0133 @ MPI_Alreducen
0132 @ YEC_AND_DERIV
0125 [MPI_\Wwaitallg == MULTIEODY_HE == ETOTAL == ERGASTULUM == PROGRAM
0125 f YEC_AND_DERIV == ETOTAL <= ERGASTULUM <= PROGRAM
0124 [MPI_Alreduceq == SUM_GRADIENT == ERGASTULUM == PROGRAM
012 [| EGE == ETOTAL == YELYERLET_STEP == MD == EXEC_MD == PROGRAM
0.072 [| ADD_INT
0.072 | ADD_INT == INIT_INT_TABLE <= MOLREAD == READRTNS <= PROGRAM
0.071 I MPI_Reduce(== SUM_GRADIENT == ERGASTULUM == PROGRAM

s 4
© 2017 Pittsburgh Supercomputing Center ‘H\ P S ‘

UTING CENTER

Performance Engineering: Procedure

e Serial

Assess overall serial performance (percent of peak)
Identify functions where code spends most time
Instrument those functions

Measure code performance using hardware counters

Identify inefficient regions of source code and cause of
inefficiencies

 Parallel

Assess overall parallel performance (scaling)

Identify functions where code spends most time (this may
change at high core counts)

Instrument those functions
Identify load balancing issues, serial regions

Identify communication bottlenecks--use tracing to help
identify cause and effect

»
© 2017 Pittsburgh Supercomputing Center

Some Take-Home Points

Good choice of (serial and parallel) algorithm is most
Important

Performance measurement can help you determine if
algorithm and implementation is good

Do compiler and MPI parameter optimizations first
Check/optimize serial performance before investing a lot
of time in improving scaling

Choose the right tool for the job

Know when to stop: 80:20 rule

XSEDE (and PRACE) staff collaborate with code
developers to help with performance engineering of
parallel codes (Extended Collaborative Support)

»
© 2017 Pittsburgh Supercomputing Center

© 2017 Pittsburgh Supercomputing Center

Questions?

blood@psc.edu

PITTSBURGH SUPERCOMPUTING CENTER

	Performance Engineering �of Parallel Applications
	Acknowledgment
	Outline for Performance Sessions
	Fitting algorithms to hardware…and vice versa
	Code Development and Optimization Process
	Performance engineering workflow
	Slide Number 7
	Hardware Counters
	Features of PAPI
	Measurement Techniques
	Inclusive and Exclusive Profiles
	Applying Performance Tools to Improve Parallel Performance of the UNRES MD code
	Structure of UNRES
	Performance Engineering: Procedure
	Is There a Performance Problem?
	Detecting Performance Problems
	Use a Sampling Tool for Initial Performance Check
	UNRES: Serial Performance
	UNRES: Parallel Performance
	Performance Engineering: Procedure
	Which Functions are Important?
	Contributions of Functions
	UNRES Function Summary
	Performance Engineering: Procedure
	Digging Deeper: Instrument Key Functions
	Choose a tool: there are many!
	TAU: Tuning and Analysis Utilities
	General Instructions for TAU
	Using TAU with Makefiles
	Tiny Routines: High Overhead
	Reducing Overhead
	Selective Instrumentation File
	Selective Instrumentation File
	Getting a Call Path with TAU
	Getting Call Path Information
	Isolate regions of code execution
	Key UNRES Functions in TAU �(with Startup Time)
	Key UNRES Functions (MD Time Only)
	Performance Engineering: Procedure
	Detecting Serial Performance Issues
	Create a Derived Metric in Paraprof Manager
	Perf of EELEC (peak is 2)
	Performance Engineering: Procedure
	Do compiler optimization first!�EELEC – After forcing inlining with compiler
	Further Info on Serial Optimization
	Performance Engineering: Procedure
	TAU Recipe #1: Detecting Serial Bottlenecks
	Serial Bottleneck Detection in UNRES: Function Scaling 	(2-32 cores)
	TAU Recipe #2: Detecting Parallel Load Imbalance
	Load Imbalance Detection in UNRES
	Major Serial Bottleneck and Load Imbalance in UNRES Eliminated
	Next Iteration of Performance Engineering �with Optimized Code
	Use Call Path Information: MPI Calls
	Performance Engineering: Procedure
	Some Take-Home Points
	Questions?��blood@psc.edu

