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Outline for Performance Sessions

• Thursday:
– Introduction to performance engineering (Phil Blood)
– Performance profiling of scientific application with Score-P (Christian 

Feld)
– Analysis of performance profiles with TAU Paraprof (Phil Blood)

• Friday:
– Trace measurement using Score-P (Christian Feld)
– Trace analysis with Scalasca (Christian Feld) 
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Fitting algorithms to hardware…and vice versa

Ivaylo Ivanov, Andrew McCammon, UCSDDE Shaw Research

Molecular dynamics simulations on 
Application Specific Integrated Circuit (ASIC)
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Choose 
algorithm Implement Analyze Optimize

Code Development and Optimization Process

• Choice of algorithm most important consideration 
(serial and parallel)

• Highly scalable codes must be designed to be 
scalable from the beginning (or rewritten)! 

• Analysis may reveal need for new algorithm or 
completely different implementation rather than 
optimization

• Focus of this lecture: using tools to assess parallel 
performance 
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Performance engineering workflow

21ST VI-HPS TUNING WORKSHOP (LRZ, GARCHING, 18-22 APR 2016)

•Calculation of metrics
•Identification of 
performance problems

•Presentation of results

•Modifications intended to 
eliminate/reduce 
performance problem

•Collection of performance 
data

•Aggregation of 
performance data

•Prepare application with 
symbols

•Insert extra code 
(probes/hooks)

Preparation Measurement

AnalysisOptimization

Slide courtesy VI-HPS



© 2017 Pittsburgh Supercomputing Center

A little background...



© 2017 Pittsburgh Supercomputing Center

Hardware Counters
• Counters: set of registers that count processor 

events, like floating point operations, or cycles 
• Opteron “Istanbul” had 6 counter registers, so 6 

types of events could be monitored simultaneously
• PAPI: Performance API
• Standard API for accessing hardware performance 

counters
• Enable mapping of code to underlying architecture
• Facilitates compiler optimizations and hand tuning
• Seeks to guide compiler improvements and 

architecture development to relieve common 
bottlenecks
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Features of PAPI

• Portable: uses same routines to access counters across 
all architectures

• High-level interface
– Using predefined standard events the same source code can 

access similar counters across various architectures without 
modification.

– papi_avail
• Low-level interface

– Provides access to all machine specific counters (requires 
source code modification)

– Increased efficiency and flexibility
– papi_native_avail

• Third-party tools
– TAU, HPC Toolkit

• Might require linux kernel patch
– Direct support in linux kernels ≥ 2.6.31 (use latest PAPI)
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Measurement Techniques

• When is measurement triggered?
– Sampling (indirect, external, low overhead)

• interrupts, hardware counter overflow, …
– Instrumentation (direct, internal, high overhead)

• through code modification

• How are data recorded?
– Profiling

• summarizes performance data during execution
• per process / thread and organized with respect to 

context
– Tracing

• trace record with performance data and timestamp
• per process / thread
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inclusive
duration

exclusive
duration

int foo() 
{

int a;
a = a + 1;

bar();

a = a + 1;
return a;

}

Inclusive and Exclusive Profiles

• Performance with respect to code regions
• Exclusive measurements for region only
• Inclusive measurements includes child regions
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Applying Performance Tools to Improve Parallel 
Performance of the UNRES MD code

The UNRES molecular dynamics (MD) code utilizes a carefully-derived 
mesoscopic protein force field to study and predict protein folding pathways 
by means of molecular dynamics simulations.

http://cbsu.tc.cornell.edu/software/protarch/index.htmhttp://www.chem.cornell.edu/has5/

http://cbsu.tc.cornell.edu/software/protarch/index.htm
http://www.chem.cornell.edu/has5/
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Structure of UNRES
• Two issues

– Master/Worker code

– Significant startup time: must remove from profiling
• Setup time: 300 sec
• MD Time: 1 sec/step
• Only MD time important for production runs of 

millions of steps
• Could run for 30,000 steps to amortize startup!

if (myrank==0)
MD=>...=>EELEC

else
ERGASTULUM=>...=>EELEC

endif
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Performance Engineering: Procedure

• Serial 
– Assess overall serial performance (percent of peak)
– Identify functions where code spends most time
– Instrument those functions
– Measure code performance using hardware counters
– Identify inefficient regions of source code and cause of 

inefficiencies

• Parallel
– Assess overall parallel performance (scaling)
– Identify functions where code spends most time (this may 

change at high core counts)
– Instrument those functions
– Identify load balancing issues, serial regions
– Identify communication bottlenecks--use tracing to help 

identify cause and effect



© 2017 Pittsburgh Supercomputing Center

Is There a Performance Problem?
• What does it mean for a code to perform “poorly”?

– Depends on the work being done
– Traditional measure: Percentage of peak performance

– What performance should I expect with my algorithm?
– Roofline models: establish performance bounds for various 

numerical methods 
– Arithmetic Intensity: Ratio of total floating-point operations (FLOPs) 

to total data movement (bytes)

Source: http://crd.lbl.gov/departments/computer-science/PAR/research/roofline/
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Detecting Performance Problems
• Serial Performance: Fraction of Peak

– 20% peak (overall) is usually decent; After that you decide 
how much effort it is worth

– Theoretical FLOP/sec peak = FLOP/cycle * cycles/sec
– 80:20 rule

• Parallel Performance: Scalability
– Does run time decrease by 2x when I use 2x cores? (total 

work remains constant)
• Strong scalability

– Does run time remain the same when I keep the amount of 
work per core the same?

• Weak scalability
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Use a Sampling Tool for Initial Performance 
Check

• HPC Toolkit
– Powerful sampling based tool
– No recompilation necessary
– Function level information available

• PerfExpert: TACC-developed automated 
performance analysis built on HPC Toolkit

• Worth checking out:
http://hpctoolkit.org/

http://www.tacc.utexas.edu/perfexpert

http://hpctoolkit.org/
http://www.tacc.utexas.edu/perfexpert
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UNRES: Serial Performance
Processor and System Information
===========================================================
Node CPUs               : 768
Vendor                      : Intel
Family                       : Itanium 2
Clock (MHz)              : 1669.001

Statistics
==========================================================
Floating point operations per cycle....................................                0.597
MFLOPS (cycles)........................................................                  995.801
CPU time (seconds).....................................................               1404.675

• Theoretical peak on Itanium2: 4 FLOP/cycle *1669 MHz = 6676 MFLOPS
• UNRES getting 15% of peak--needs serial optimization on Itanium
• Much better on x86_64: 1720 MFLOPS, 33% peak
• Make sure compiler is inlining (-ipo needed for ifort, –Minline=reshape needed for 
pgf90)
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UNRES: Parallel Performance
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Performance Engineering: Procedure

• Serial 
– Assess overall serial performance (percent of peak)
– Identify functions where code spends most time
– Instrument those functions
– Measure code performance using hardware counters
– Identify inefficient regions of source code and cause of 

inefficiencies

• Parallel
– Assess overall parallel performance (scaling)
– Identify functions where code spends most time (this may 

change at high core counts)
– Instrument those functions
– Identify load balancing issues, serial regions
– Identify communication bottlenecks--use tracing to help 

identify cause and effect
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Which Functions are Important?

• Usually a handful of functions account for 
90% of the execution time

• Make sure you are measuring the 
production part of your code 

• For parallel apps, measure at high core 
counts – insignificant functions become 
significant!
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Contributions of Functions
Function Summary
--------------------------------------------------------------------------------
Samples   Self %  Total %  Function

154346   76.99%   76.99%  pc_jac2d_blk3
14506    7.24%   84.23%  cg3_blk
10185    5.08%   89.31%  matxvec2d_blk3
6937    3.46%   92.77%  __kmp_x86_pause
4711    2.35%   95.12%  __kmp_wait_sleep
3042    1.52%   96.64%  dot_prod2d_blk3
2366    1.18%   97.82%  add_exchange2d_blk3

Function:File:Line Summary
--------------------------------------------------------------------------------
Samples   Self %  Total %  Function:File:Line

39063   19.49%   19.49%  pc_jac2d_blk3:/home/rkufrin/apps/aspcg/pc_jac2d_blk3.f:20
24134   12.04%   31.52%  pc_jac2d_blk3:/home/rkufrin/apps/aspcg/pc_jac2d_blk3.f:19
15626    7.79%   39.32%  pc_jac2d_blk3:/home/rkufrin/apps/aspcg/pc_jac2d_blk3.f:21
15028    7.50%   46.82%  pc_jac2d_blk3:/home/rkufrin/apps/aspcg/pc_jac2d_blk3.f:33
13878    6.92%   53.74%  pc_jac2d_blk3:/home/rkufrin/apps/aspcg/pc_jac2d_blk3.f:24
11880    5.93%   59.66%  pc_jac2d_blk3:/home/rkufrin/apps/aspcg/pc_jac2d_blk3.f:31
8896    4.44%   64.10%  pc_jac2d_blk3:/home/rkufrin/apps/aspcg/pc_jac2d_blk3.f:22
7863    3.92%   68.02%  matxvec2d_blk3:/home/rkufrin/apps/aspcg/matxvec2d_blk3.f:19
7145    3.56%   71.59%  pc_jac2d_blk3:/home/rkufrin/apps/aspcg/pc_jac2d_blk3.f:32
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UNRES Function Summary

Function Summary
-----------------------------------------------------------

Samples      Self %    Total %  Function

2905589   51.98%   51.98%  eelecij
827023   14.79%   66.77%  egb
634107   11.34%   78.11%  setup_md_matrices
247353     4.42%   82.54%  escp
220089     3.94%   86.48%  etrbk3
183492     3.28%   89.76%  einvit
144851     2.59%   92.35%  banach
132058     2.36%   94.71%  ginv_mult

66182     1.18%   95.89%  multibody_hb
39495     0.71%   96.60%  etred3
38111     0.68%   97.28%  eelec

• Short runs include 
some startup 
functions amongst 
top functions

• To eliminate this 
perform a full 
production run with 
sampling tool

• Can use sampling 
tools during 
production runs due 
to low overhead—
minimal impact on 
application 
performance
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Performance Engineering: Procedure

• Serial 
– Assess overall serial performance (percent of peak)
– Identify functions where code spends most time
– Instrument those functions
– Measure code performance using hardware counters
– Identify inefficient regions of source code and cause of 

inefficiencies

• Parallel
– Assess overall parallel performance (scaling)
– Identify functions where code spends most time (this may 

change at high core counts)
– Instrument those functions
– Identify load balancing issues, serial regions
– Identify communication bottlenecks--use tracing to help 

identify cause and effect
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Digging Deeper: Instrument Key Functions

• Instrumentation: Insert functions into source 
code to measure performance

• Pro: Gives precise information about where 
things happen

• Con: High overhead and perturbation of 
application performance

• Thus essential to only instrument important 
functions
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Choose a tool: there are many!

• VI-HPS maintains a list and tool guide
– http://www.vi-hps.org/tools/

• Will use TAU as an example in this 
presentation

• Focus on the general principles rather than 
specific details

• Christian Feld will take you through specific 
details using Score-P and Scalasca tools 
during hands-on session

http://www.vi-hps.org/tools/
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TAU: Tuning and Analysis Utilities

• Useful for a more detailed analysis
– Routine level
– Loop level
– Performance counters
– Communication performance

• A more sophisticated tool
– Performance analysis of Fortran, C, C++, Java, and 

Python
– Portable: Tested on all major platforms
– Steeper learning curve
http://www.cs.uoregon.edu/research/tau/home.php

http://www.cs.uoregon.edu/research/tau/home.php
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General Instructions for TAU

• Use a TAU Makefile stub (even if you don’t use 
makefiles for your compilation)

• Use TAU scripts for compiling (tau_cc.sh tau_f90.sh)
• Example (most basic usage):

• Excellent “Cheat Sheet”!
– Everything you need to know?! (Almost)
– http://www.cs.uoregon.edu/research/tau/tau_releases/tau-

2.20.1/html/TAU-quickref.pdf

module load tau

setenv TAU_MAKEFILE <path>/Makefile.tau-papi-pdt-pgi

setenv TAU_OPTIONS "-optVerbose -optKeepFiles“

tau_f90.sh -o hello hello_mpi.f90
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Using TAU with Makefiles

• Fairly simple to use with well written makefiles:

setenv TAU_MAKEFILE <path>/Makefile.tau-papi-mpi-pdt-pgi

setenv TAU_OPTIONS "-optVerbose –optKeepFiles –optPreProcess”

make FC=tau_f90.sh

– run code as normal
– run pprof (text) or paraprof (GUI) to get results
– paraprof --pack file.ppk (packs all of the profile files into 

one file, easy to copy back to local workstation)

• Example scenarios
– Typically you can do cut and paste from here:

http://www.cs.uoregon.edu/research/tau/docs/scenario/index.html

http://www.cs.uoregon.edu/research/tau/docs/scenario/index.html
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Tiny Routines: High Overhead

After:
double precision function scalar(u,v)
double precision u(3),v(3)

call TAU_PROFILE_TIMER(profiler, 'SCALAR […]')
call TAU_PROFILE_START(profiler)
scalar=u(1)*v(1)+u(2)*v(2)+u(3)*v(3)
call TAU_PROFILE_STOP(profiler)

return
call TAU_PROFILE_STOP(profiler)

end

Before:
double precision function scalar(u,v)
double precision u(3),v(3)

scalar=u(1)*v(1)+u(2)*v(2)+u(3)*v(3)
return
end
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Reducing Overhead

Overhead (time in sec):
MD steps base:

51.4 seconds

MD steps with TAU:
315 seconds

Must reduce overhead to 
get meaningful results:

• In paraprof go to “File” 
and select “Create 
Selective Instrumentation 
File”

ParaProf Profile Visualization Tool

Click on one of these labels to 
reveal detailed function info
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Selective Instrumentation File
TAU automatically generates a list of routines that 
you can save to a selective instrumentation file
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Selective Instrumentation File

• Automatically generated file essentially eliminates 
overhead in instrumented UNRES

• In addition to eliminating overhead, use this to 
specify:
– Files to include/exclude
– Routines to include/exclude
– Directives for loop instrumentation
– Phase definitions

• Specify the file in TAU_OPTIONS and recompile:
setenv TAU_OPTIONS "-optVerbose –optKeepFiles
–optPreProcess -optTauSelectFile=select .tau“

• http://www.cs.uoregon.edu/research/tau/docs/newguide/bk03ch01.html
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Getting a Call Path with TAU
• Why do I need this?

– To optimize a routine, you often need to know what is 
above and below it 

– e.g. Determine which routines make significant MPI 
calls

– Helps with defining phases: stages of execution within 
the code that you are interested in

• To get callpath info, do the following at runtime:
setenv TAU_CALLPATH 1 (this enables callpath)
setenv TAU_CALLPATH_DEPTH 5  (defines depth)

• Higher depth introduces more overhead in TAU
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Getting Call Path Information

Right click 
name of node 
and select 
“Show Thread 
Call Graph”
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Isolate regions of code execution

• Eliminated overhead, now we need to deal with startup 
time:
– Choose a region of the code of interest: e.g. the main 

computational kernel 
– Determine where in the code that region begins and ends 

(call path can be helpful)
– Then put something like this in selective instrumentation 

file:
static phase name="foo1_bar“ file="foo.c“ line=26 to line=27
– Recompile and rerun



© 2017 Pittsburgh Supercomputing Center

Key UNRES Functions in TAU 
(with Startup Time) 

To get this view, left click 
on Mean, Max, Min, or 
Node labels on left hand 
side of main Paraprof
window
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Key UNRES Functions (MD Time Only)
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Performance Engineering: Procedure

• Serial 
– Assess overall serial performance (percent of peak)
– Identify functions where code spends most time
– Instrument those functions
– Measure code performance using hardware counters
– Identify inefficient regions of source code and cause of 

inefficiencies

• Parallel
– Assess overall parallel performance (scaling)
– Identify functions where code spends most time (this may 

change at high core counts)
– Instrument those functions
– Identify load balancing issues, serial regions
– Identify communication bottlenecks--use tracing to help 

identify cause and effect
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Detecting Serial Performance Issues

• Identify hardware performance counters of interest
– papi_avail
– papi_native_avail
– Run these commands on compute nodes!

• Run TAU (perhaps isolating regions of interest)
• Specify PAPI hardware counters at run time

• Be careful! Definition (and accuracy) of PAPI 
hardware counter presets can vary between 
architectures

setenv TAU_METRICS GET_TIME_OF_DAY:PAPI_FP_OPS:PAPI_TOT_CYC
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Create a Derived Metric in Paraprof Manager
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Perf of EELEC (peak is 2)

Go to:  Paraprof
manager 
Options->”Show 
derived metrics 
panel”



© 2017 Pittsburgh Supercomputing Center

Performance Engineering: Procedure

• Serial 
– Assess overall serial performance (percent of peak)
– Identify functions where code spends most time
– Instrument those functions
– Measure code performance using hardware counters
– Identify inefficient regions of source code and cause of 

inefficiencies

• Parallel
– Assess overall parallel performance (scaling)
– Identify functions where code spends most time (this may 

change at high core counts)
– Instrument those functions
– Identify load balancing issues, serial regions
– Identify communication bottlenecks--use tracing to help 

identify cause and effect
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Do compiler optimization first!
EELEC – After forcing inlining with compiler
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Further Info on Serial Optimization

• Tools help you find issues, areas of code to 
focus on – solving issues is application and 
hardware specific

• Good resource on techniques for serial 
optimization:
– “Performance Optimization of Numerically Intensive 

Codes” Stefan Goedecker, Adolfy Hoisie, SIAM, 2001.
– “Introduction to High Performance Computing for 

Scientists and Engineers”, Georg Hager, Gerhard Wellein, 
CRC Press, 2010.

– CI-Tutor course: “Performance Tuning for Clusters” 
http://ci-tutor.ncsa.illinois.edu/
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Performance Engineering: Procedure

• Serial 
– Assess overall serial performance (percent of peak)
– Identify functions where code spends most time
– Instrument those functions
– Measure code performance using hardware counters
– Identify inefficient regions of source code and cause of 

inefficiencies

• Parallel
– Assess overall parallel performance (scaling)
– Identify functions where code spends most time (this may 

change at high core counts)
– Instrument those functions
– Identify load balancing issues, serial regions
– Identify communication bottlenecks--use tracing to help 

identify cause and effect
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TAU Recipe #1: Detecting Serial Bottlenecks

• To identify scaling bottlenecks, do the following for each run 
in a scaling study (e.g. 2-64 cores):
1) In Paraprof manager right-click “Default Exp” and 

select “Add Trial”.  Find packed profile file and add it.
2) If you defined a phase, from main paraprof window 

select: Windows -> Function Legend-> Filter-
>Advanced Filtering

3) Type in the name of the phase you defined, and click 
‘Apply’

4) Return to Paraprof manager, right-click the name of 
the trial, and select “Add to Mean Comparison 
Window”

• Compare functions across increasing core counts
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Serial Bottleneck Detection in UNRES: 
Function Scaling (2-32 cores)

• Examine timings of 
functions in your region of 
interest as you scale up

• Identify functions that do 
not scale well or that need 
to be parallelized

• Find communication 
routines that are starting to 
dominate runtime

• Caution: Looking at mean
execution time may not 
reveal some scaling 
problems (load imbalance)

Serial function 
begins to dominate 
runtime
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TAU Recipe #2: Detecting Parallel Load 
Imbalance

• Examine timings of functions in your region of interest
─ If you defined a phase, from paraprof window, right-

click on phase name and select: ‘Show profile for this 
phase’

• To look at load imbalance in a particular function:
– Left-click on function name to look at timings across 

all processors

• To look at load imbalance across all functions:
– In Paraprof window go to ‘Options’
– Uncheck ‘Normalize’ and ‘Stack Bars Together’
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Load Imbalance Detection in UNRES

• In this case: Developers unaware that chosen algorithm would 
create load imbalance
• Reexamined available algorithms and found one with much better 
load balance – also fewer floating point operations!
• Also parallelized serial function causing bottleneck

Only looking at time spent 
in the important MD phase

Observe multiple causes of load 
imbalance, as well as the serial 
bottleneck
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Major Serial Bottleneck and Load Imbalance in 
UNRES Eliminated

• Due to 4x faster serial algorithm the balance 
between computation and communication has 
shifted – communication must be more efficient to 
scale well
• Code then undergoes another round of profiling 
and optimization
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Next Iteration of Performance Engineering 
with Optimized Code

Load imbalance on one processor causing other processors to idle in MPI_Barrier

May need to change how data is distributed, or even change underlying algorithm.  
But beware investing too much effort for minimal gain!
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Use Call Path Information: MPI Calls

Use call path information to 
find routines from which key 
MPI calls are made.  Include 
these routines in tracing 
experiment.

To show source locations select: 
File -> Preferences
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Performance Engineering: Procedure

• Serial 
– Assess overall serial performance (percent of peak)
– Identify functions where code spends most time
– Instrument those functions
– Measure code performance using hardware counters
– Identify inefficient regions of source code and cause of 

inefficiencies

• Parallel
– Assess overall parallel performance (scaling)
– Identify functions where code spends most time (this may 

change at high core counts)
– Instrument those functions
– Identify load balancing issues, serial regions
– Identify communication bottlenecks--use tracing to help 

identify cause and effect
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Some Take-Home Points

• Good choice of (serial and parallel) algorithm is most 
important

• Performance measurement can help you determine if 
algorithm and implementation is good

• Do compiler and MPI parameter optimizations first
• Check/optimize serial performance before investing a lot 

of time in improving scaling
• Choose the right tool for the job
• Know when to stop: 80:20 rule
• XSEDE (and PRACE) staff collaborate with code 

developers to help with performance engineering of 
parallel codes (Extended Collaborative Support)
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Questions?

blood@psc.edu
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