
© 2017 Pittsburgh Supercomputing Center June 29, 2017

Performance Engineering
of Parallel Applications

Philip Blood
Pittsburgh Supercomputing Center

blood@psc.edu

International Summer School on HPC Challenges in Computational Sciences
Boulder, CO

© 2017 Pittsburgh Supercomputing Center

Acknowledgment

• Christian Feld, Jülich Supercomputing Centre
• Virtual Institute - High Productivity

Supercomputing (VI-HPS)
• Raghu Reddy

© 2017 Pittsburgh Supercomputing Center

Outline for Performance Sessions

• Thursday:
– Introduction to performance engineering (Phil Blood)
– Performance profiling of scientific application with Score-P (Christian

Feld)
– Analysis of performance profiles with TAU Paraprof (Phil Blood)

• Friday:
– Trace measurement using Score-P (Christian Feld)
– Trace analysis with Scalasca (Christian Feld)

© 2017 Pittsburgh Supercomputing Center

Fitting algorithms to hardware…and vice versa

Ivaylo Ivanov, Andrew McCammon, UCSDDE Shaw Research

Molecular dynamics simulations on
Application Specific Integrated Circuit (ASIC)

© 2017 Pittsburgh Supercomputing Center

Choose
algorithm Implement Analyze Optimize

Code Development and Optimization Process

• Choice of algorithm most important consideration
(serial and parallel)

• Highly scalable codes must be designed to be
scalable from the beginning (or rewritten)!

• Analysis may reveal need for new algorithm or
completely different implementation rather than
optimization

• Focus of this lecture: using tools to assess parallel
performance

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Performance engineering workflow

21ST VI-HPS TUNING WORKSHOP (LRZ, GARCHING, 18-22 APR 2016)

•Calculation of metrics
•Identification of
performance problems

•Presentation of results

•Modifications intended to
eliminate/reduce
performance problem

•Collection of performance
data

•Aggregation of
performance data

•Prepare application with
symbols

•Insert extra code
(probes/hooks)

Preparation Measurement

AnalysisOptimization

Slide courtesy VI-HPS

© 2017 Pittsburgh Supercomputing Center

A little background...

© 2017 Pittsburgh Supercomputing Center

Hardware Counters
• Counters: set of registers that count processor

events, like floating point operations, or cycles
• Opteron “Istanbul” had 6 counter registers, so 6

types of events could be monitored simultaneously
• PAPI: Performance API
• Standard API for accessing hardware performance

counters
• Enable mapping of code to underlying architecture
• Facilitates compiler optimizations and hand tuning
• Seeks to guide compiler improvements and

architecture development to relieve common
bottlenecks

© 2017 Pittsburgh Supercomputing Center

Features of PAPI

• Portable: uses same routines to access counters across
all architectures

• High-level interface
– Using predefined standard events the same source code can

access similar counters across various architectures without
modification.

– papi_avail
• Low-level interface

– Provides access to all machine specific counters (requires
source code modification)

– Increased efficiency and flexibility
– papi_native_avail

• Third-party tools
– TAU, HPC Toolkit

• Might require linux kernel patch
– Direct support in linux kernels ≥ 2.6.31 (use latest PAPI)

© 2017 Pittsburgh Supercomputing Center

Measurement Techniques

• When is measurement triggered?
– Sampling (indirect, external, low overhead)

• interrupts, hardware counter overflow, …
– Instrumentation (direct, internal, high overhead)

• through code modification

• How are data recorded?
– Profiling

• summarizes performance data during execution
• per process / thread and organized with respect to

context
– Tracing

• trace record with performance data and timestamp
• per process / thread

© 2017 Pittsburgh Supercomputing Center

inclusive
duration

exclusive
duration

int foo()
{

int a;
a = a + 1;

bar();

a = a + 1;
return a;

}

Inclusive and Exclusive Profiles

• Performance with respect to code regions
• Exclusive measurements for region only
• Inclusive measurements includes child regions

© 2017 Pittsburgh Supercomputing Center

Applying Performance Tools to Improve Parallel
Performance of the UNRES MD code

The UNRES molecular dynamics (MD) code utilizes a carefully-derived
mesoscopic protein force field to study and predict protein folding pathways
by means of molecular dynamics simulations.

http://cbsu.tc.cornell.edu/software/protarch/index.htmhttp://www.chem.cornell.edu/has5/

http://cbsu.tc.cornell.edu/software/protarch/index.htm
http://www.chem.cornell.edu/has5/

© 2017 Pittsburgh Supercomputing Center

Structure of UNRES
• Two issues

– Master/Worker code

– Significant startup time: must remove from profiling
• Setup time: 300 sec
• MD Time: 1 sec/step
• Only MD time important for production runs of

millions of steps
• Could run for 30,000 steps to amortize startup!

if (myrank==0)
MD=>...=>EELEC

else
ERGASTULUM=>...=>EELEC

endif

© 2017 Pittsburgh Supercomputing Center

Performance Engineering: Procedure

• Serial
– Assess overall serial performance (percent of peak)
– Identify functions where code spends most time
– Instrument those functions
– Measure code performance using hardware counters
– Identify inefficient regions of source code and cause of

inefficiencies

• Parallel
– Assess overall parallel performance (scaling)
– Identify functions where code spends most time (this may

change at high core counts)
– Instrument those functions
– Identify load balancing issues, serial regions
– Identify communication bottlenecks--use tracing to help

identify cause and effect

© 2017 Pittsburgh Supercomputing Center

Is There a Performance Problem?
• What does it mean for a code to perform “poorly”?

– Depends on the work being done
– Traditional measure: Percentage of peak performance

– What performance should I expect with my algorithm?
– Roofline models: establish performance bounds for various

numerical methods
– Arithmetic Intensity: Ratio of total floating-point operations (FLOPs)

to total data movement (bytes)

Source: http://crd.lbl.gov/departments/computer-science/PAR/research/roofline/

© 2017 Pittsburgh Supercomputing Center

Detecting Performance Problems
• Serial Performance: Fraction of Peak

– 20% peak (overall) is usually decent; After that you decide
how much effort it is worth

– Theoretical FLOP/sec peak = FLOP/cycle * cycles/sec
– 80:20 rule

• Parallel Performance: Scalability
– Does run time decrease by 2x when I use 2x cores? (total

work remains constant)
• Strong scalability

– Does run time remain the same when I keep the amount of
work per core the same?

• Weak scalability

© 2017 Pittsburgh Supercomputing Center

Use a Sampling Tool for Initial Performance
Check

• HPC Toolkit
– Powerful sampling based tool
– No recompilation necessary
– Function level information available

• PerfExpert: TACC-developed automated
performance analysis built on HPC Toolkit

• Worth checking out:
http://hpctoolkit.org/

http://www.tacc.utexas.edu/perfexpert

http://hpctoolkit.org/
http://www.tacc.utexas.edu/perfexpert

© 2017 Pittsburgh Supercomputing Center

UNRES: Serial Performance
Processor and System Information
===
Node CPUs : 768
Vendor : Intel
Family : Itanium 2
Clock (MHz) : 1669.001

Statistics
==
Floating point operations per cycle.................................... 0.597
MFLOPS (cycles).. 995.801
CPU time (seconds)... 1404.675

• Theoretical peak on Itanium2: 4 FLOP/cycle *1669 MHz = 6676 MFLOPS
• UNRES getting 15% of peak--needs serial optimization on Itanium
• Much better on x86_64: 1720 MFLOPS, 33% peak
• Make sure compiler is inlining (-ipo needed for ifort, –Minline=reshape needed for
pgf90)

© 2017 Pittsburgh Supercomputing Center

UNRES: Parallel Performance

1

2

4

8

16

32

64

128

256

512

1024

1 2 4 8 16 32 64 12
8

25
6

tim
es

te
ps

/s
ec

Cores

UNRES Performance: Cray XT3

Bigben

Ideal

© 2017 Pittsburgh Supercomputing Center

Performance Engineering: Procedure

• Serial
– Assess overall serial performance (percent of peak)
– Identify functions where code spends most time
– Instrument those functions
– Measure code performance using hardware counters
– Identify inefficient regions of source code and cause of

inefficiencies

• Parallel
– Assess overall parallel performance (scaling)
– Identify functions where code spends most time (this may

change at high core counts)
– Instrument those functions
– Identify load balancing issues, serial regions
– Identify communication bottlenecks--use tracing to help

identify cause and effect

© 2017 Pittsburgh Supercomputing Center

Which Functions are Important?

• Usually a handful of functions account for
90% of the execution time

• Make sure you are measuring the
production part of your code

• For parallel apps, measure at high core
counts – insignificant functions become
significant!

© 2017 Pittsburgh Supercomputing Center

Contributions of Functions
Function Summary
--
Samples Self % Total % Function

154346 76.99% 76.99% pc_jac2d_blk3
14506 7.24% 84.23% cg3_blk
10185 5.08% 89.31% matxvec2d_blk3
6937 3.46% 92.77% __kmp_x86_pause
4711 2.35% 95.12% __kmp_wait_sleep
3042 1.52% 96.64% dot_prod2d_blk3
2366 1.18% 97.82% add_exchange2d_blk3

Function:File:Line Summary
--
Samples Self % Total % Function:File:Line

39063 19.49% 19.49% pc_jac2d_blk3:/home/rkufrin/apps/aspcg/pc_jac2d_blk3.f:20
24134 12.04% 31.52% pc_jac2d_blk3:/home/rkufrin/apps/aspcg/pc_jac2d_blk3.f:19
15626 7.79% 39.32% pc_jac2d_blk3:/home/rkufrin/apps/aspcg/pc_jac2d_blk3.f:21
15028 7.50% 46.82% pc_jac2d_blk3:/home/rkufrin/apps/aspcg/pc_jac2d_blk3.f:33
13878 6.92% 53.74% pc_jac2d_blk3:/home/rkufrin/apps/aspcg/pc_jac2d_blk3.f:24
11880 5.93% 59.66% pc_jac2d_blk3:/home/rkufrin/apps/aspcg/pc_jac2d_blk3.f:31
8896 4.44% 64.10% pc_jac2d_blk3:/home/rkufrin/apps/aspcg/pc_jac2d_blk3.f:22
7863 3.92% 68.02% matxvec2d_blk3:/home/rkufrin/apps/aspcg/matxvec2d_blk3.f:19
7145 3.56% 71.59% pc_jac2d_blk3:/home/rkufrin/apps/aspcg/pc_jac2d_blk3.f:32

© 2017 Pittsburgh Supercomputing Center

UNRES Function Summary

Function Summary

Samples Self % Total % Function

2905589 51.98% 51.98% eelecij
827023 14.79% 66.77% egb
634107 11.34% 78.11% setup_md_matrices
247353 4.42% 82.54% escp
220089 3.94% 86.48% etrbk3
183492 3.28% 89.76% einvit
144851 2.59% 92.35% banach
132058 2.36% 94.71% ginv_mult

66182 1.18% 95.89% multibody_hb
39495 0.71% 96.60% etred3
38111 0.68% 97.28% eelec

• Short runs include
some startup
functions amongst
top functions

• To eliminate this
perform a full
production run with
sampling tool

• Can use sampling
tools during
production runs due
to low overhead—
minimal impact on
application
performance

© 2017 Pittsburgh Supercomputing Center

Performance Engineering: Procedure

• Serial
– Assess overall serial performance (percent of peak)
– Identify functions where code spends most time
– Instrument those functions
– Measure code performance using hardware counters
– Identify inefficient regions of source code and cause of

inefficiencies

• Parallel
– Assess overall parallel performance (scaling)
– Identify functions where code spends most time (this may

change at high core counts)
– Instrument those functions
– Identify load balancing issues, serial regions
– Identify communication bottlenecks--use tracing to help

identify cause and effect

© 2017 Pittsburgh Supercomputing Center

Digging Deeper: Instrument Key Functions

• Instrumentation: Insert functions into source
code to measure performance

• Pro: Gives precise information about where
things happen

• Con: High overhead and perturbation of
application performance

• Thus essential to only instrument important
functions

© 2017 Pittsburgh Supercomputing Center

Choose a tool: there are many!

• VI-HPS maintains a list and tool guide
– http://www.vi-hps.org/tools/

• Will use TAU as an example in this
presentation

• Focus on the general principles rather than
specific details

• Christian Feld will take you through specific
details using Score-P and Scalasca tools
during hands-on session

http://www.vi-hps.org/tools/

© 2017 Pittsburgh Supercomputing Center

TAU: Tuning and Analysis Utilities

• Useful for a more detailed analysis
– Routine level
– Loop level
– Performance counters
– Communication performance

• A more sophisticated tool
– Performance analysis of Fortran, C, C++, Java, and

Python
– Portable: Tested on all major platforms
– Steeper learning curve
http://www.cs.uoregon.edu/research/tau/home.php

http://www.cs.uoregon.edu/research/tau/home.php

© 2017 Pittsburgh Supercomputing Center

General Instructions for TAU

• Use a TAU Makefile stub (even if you don’t use
makefiles for your compilation)

• Use TAU scripts for compiling (tau_cc.sh tau_f90.sh)
• Example (most basic usage):

• Excellent “Cheat Sheet”!
– Everything you need to know?! (Almost)
– http://www.cs.uoregon.edu/research/tau/tau_releases/tau-

2.20.1/html/TAU-quickref.pdf

module load tau

setenv TAU_MAKEFILE <path>/Makefile.tau-papi-pdt-pgi

setenv TAU_OPTIONS "-optVerbose -optKeepFiles“

tau_f90.sh -o hello hello_mpi.f90

© 2017 Pittsburgh Supercomputing Center

Using TAU with Makefiles

• Fairly simple to use with well written makefiles:

setenv TAU_MAKEFILE <path>/Makefile.tau-papi-mpi-pdt-pgi

setenv TAU_OPTIONS "-optVerbose –optKeepFiles –optPreProcess”

make FC=tau_f90.sh

– run code as normal
– run pprof (text) or paraprof (GUI) to get results
– paraprof --pack file.ppk (packs all of the profile files into

one file, easy to copy back to local workstation)

• Example scenarios
– Typically you can do cut and paste from here:

http://www.cs.uoregon.edu/research/tau/docs/scenario/index.html

http://www.cs.uoregon.edu/research/tau/docs/scenario/index.html

© 2017 Pittsburgh Supercomputing Center

Tiny Routines: High Overhead

After:
double precision function scalar(u,v)
double precision u(3),v(3)

call TAU_PROFILE_TIMER(profiler, 'SCALAR […]')
call TAU_PROFILE_START(profiler)
scalar=u(1)*v(1)+u(2)*v(2)+u(3)*v(3)
call TAU_PROFILE_STOP(profiler)

return
call TAU_PROFILE_STOP(profiler)

end

Before:
double precision function scalar(u,v)
double precision u(3),v(3)

scalar=u(1)*v(1)+u(2)*v(2)+u(3)*v(3)
return
end

© 2017 Pittsburgh Supercomputing Center

Reducing Overhead

Overhead (time in sec):
MD steps base:

51.4 seconds

MD steps with TAU:
315 seconds

Must reduce overhead to
get meaningful results:

• In paraprof go to “File”
and select “Create
Selective Instrumentation
File”

ParaProf Profile Visualization Tool

Click on one of these labels to
reveal detailed function info

© 2017 Pittsburgh Supercomputing Center

Selective Instrumentation File
TAU automatically generates a list of routines that
you can save to a selective instrumentation file

© 2017 Pittsburgh Supercomputing Center

Selective Instrumentation File

• Automatically generated file essentially eliminates
overhead in instrumented UNRES

• In addition to eliminating overhead, use this to
specify:
– Files to include/exclude
– Routines to include/exclude
– Directives for loop instrumentation
– Phase definitions

• Specify the file in TAU_OPTIONS and recompile:
setenv TAU_OPTIONS "-optVerbose –optKeepFiles
–optPreProcess -optTauSelectFile=select .tau“

• http://www.cs.uoregon.edu/research/tau/docs/newguide/bk03ch01.html

© 2017 Pittsburgh Supercomputing Center

Getting a Call Path with TAU
• Why do I need this?

– To optimize a routine, you often need to know what is
above and below it

– e.g. Determine which routines make significant MPI
calls

– Helps with defining phases: stages of execution within
the code that you are interested in

• To get callpath info, do the following at runtime:
setenv TAU_CALLPATH 1 (this enables callpath)
setenv TAU_CALLPATH_DEPTH 5 (defines depth)

• Higher depth introduces more overhead in TAU

© 2017 Pittsburgh Supercomputing Center

Getting Call Path Information

Right click
name of node
and select
“Show Thread
Call Graph”

© 2017 Pittsburgh Supercomputing Center

Isolate regions of code execution

• Eliminated overhead, now we need to deal with startup
time:
– Choose a region of the code of interest: e.g. the main

computational kernel
– Determine where in the code that region begins and ends

(call path can be helpful)
– Then put something like this in selective instrumentation

file:
static phase name="foo1_bar“ file="foo.c“ line=26 to line=27
– Recompile and rerun

© 2017 Pittsburgh Supercomputing Center

Key UNRES Functions in TAU
(with Startup Time)

To get this view, left click
on Mean, Max, Min, or
Node labels on left hand
side of main Paraprof
window

© 2017 Pittsburgh Supercomputing Center

Key UNRES Functions (MD Time Only)

© 2017 Pittsburgh Supercomputing Center

Performance Engineering: Procedure

• Serial
– Assess overall serial performance (percent of peak)
– Identify functions where code spends most time
– Instrument those functions
– Measure code performance using hardware counters
– Identify inefficient regions of source code and cause of

inefficiencies

• Parallel
– Assess overall parallel performance (scaling)
– Identify functions where code spends most time (this may

change at high core counts)
– Instrument those functions
– Identify load balancing issues, serial regions
– Identify communication bottlenecks--use tracing to help

identify cause and effect

© 2017 Pittsburgh Supercomputing Center

Detecting Serial Performance Issues

• Identify hardware performance counters of interest
– papi_avail
– papi_native_avail
– Run these commands on compute nodes!

• Run TAU (perhaps isolating regions of interest)
• Specify PAPI hardware counters at run time

• Be careful! Definition (and accuracy) of PAPI
hardware counter presets can vary between
architectures

setenv TAU_METRICS GET_TIME_OF_DAY:PAPI_FP_OPS:PAPI_TOT_CYC

© 2017 Pittsburgh Supercomputing Center

Create a Derived Metric in Paraprof Manager

© 2017 Pittsburgh Supercomputing Center

Perf of EELEC (peak is 2)

Go to: Paraprof
manager
Options->”Show
derived metrics
panel”

© 2017 Pittsburgh Supercomputing Center

Performance Engineering: Procedure

• Serial
– Assess overall serial performance (percent of peak)
– Identify functions where code spends most time
– Instrument those functions
– Measure code performance using hardware counters
– Identify inefficient regions of source code and cause of

inefficiencies

• Parallel
– Assess overall parallel performance (scaling)
– Identify functions where code spends most time (this may

change at high core counts)
– Instrument those functions
– Identify load balancing issues, serial regions
– Identify communication bottlenecks--use tracing to help

identify cause and effect

© 2017 Pittsburgh Supercomputing Center

Do compiler optimization first!
EELEC – After forcing inlining with compiler

© 2017 Pittsburgh Supercomputing Center

Further Info on Serial Optimization

• Tools help you find issues, areas of code to
focus on – solving issues is application and
hardware specific

• Good resource on techniques for serial
optimization:
– “Performance Optimization of Numerically Intensive

Codes” Stefan Goedecker, Adolfy Hoisie, SIAM, 2001.
– “Introduction to High Performance Computing for

Scientists and Engineers”, Georg Hager, Gerhard Wellein,
CRC Press, 2010.

– CI-Tutor course: “Performance Tuning for Clusters”
http://ci-tutor.ncsa.illinois.edu/

© 2017 Pittsburgh Supercomputing Center

Performance Engineering: Procedure

• Serial
– Assess overall serial performance (percent of peak)
– Identify functions where code spends most time
– Instrument those functions
– Measure code performance using hardware counters
– Identify inefficient regions of source code and cause of

inefficiencies

• Parallel
– Assess overall parallel performance (scaling)
– Identify functions where code spends most time (this may

change at high core counts)
– Instrument those functions
– Identify load balancing issues, serial regions
– Identify communication bottlenecks--use tracing to help

identify cause and effect

© 2017 Pittsburgh Supercomputing Center

TAU Recipe #1: Detecting Serial Bottlenecks

• To identify scaling bottlenecks, do the following for each run
in a scaling study (e.g. 2-64 cores):
1) In Paraprof manager right-click “Default Exp” and

select “Add Trial”. Find packed profile file and add it.
2) If you defined a phase, from main paraprof window

select: Windows -> Function Legend-> Filter-
>Advanced Filtering

3) Type in the name of the phase you defined, and click
‘Apply’

4) Return to Paraprof manager, right-click the name of
the trial, and select “Add to Mean Comparison
Window”

• Compare functions across increasing core counts

© 2017 Pittsburgh Supercomputing Center

Serial Bottleneck Detection in UNRES:
Function Scaling (2-32 cores)

• Examine timings of
functions in your region of
interest as you scale up

• Identify functions that do
not scale well or that need
to be parallelized

• Find communication
routines that are starting to
dominate runtime

• Caution: Looking at mean
execution time may not
reveal some scaling
problems (load imbalance)

Serial function
begins to dominate
runtime

© 2017 Pittsburgh Supercomputing Center

TAU Recipe #2: Detecting Parallel Load
Imbalance

• Examine timings of functions in your region of interest
─ If you defined a phase, from paraprof window, right-

click on phase name and select: ‘Show profile for this
phase’

• To look at load imbalance in a particular function:
– Left-click on function name to look at timings across

all processors

• To look at load imbalance across all functions:
– In Paraprof window go to ‘Options’
– Uncheck ‘Normalize’ and ‘Stack Bars Together’

© 2017 Pittsburgh Supercomputing Center

Load Imbalance Detection in UNRES

• In this case: Developers unaware that chosen algorithm would
create load imbalance
• Reexamined available algorithms and found one with much better
load balance – also fewer floating point operations!
• Also parallelized serial function causing bottleneck

Only looking at time spent
in the important MD phase

Observe multiple causes of load
imbalance, as well as the serial
bottleneck

© 2017 Pittsburgh Supercomputing Center

Major Serial Bottleneck and Load Imbalance in
UNRES Eliminated

• Due to 4x faster serial algorithm the balance
between computation and communication has
shifted – communication must be more efficient to
scale well
• Code then undergoes another round of profiling
and optimization

© 2017 Pittsburgh Supercomputing Center

Next Iteration of Performance Engineering
with Optimized Code

Load imbalance on one processor causing other processors to idle in MPI_Barrier

May need to change how data is distributed, or even change underlying algorithm.
But beware investing too much effort for minimal gain!

© 2017 Pittsburgh Supercomputing Center

Use Call Path Information: MPI Calls

Use call path information to
find routines from which key
MPI calls are made. Include
these routines in tracing
experiment.

To show source locations select:
File -> Preferences

© 2017 Pittsburgh Supercomputing Center

Performance Engineering: Procedure

• Serial
– Assess overall serial performance (percent of peak)
– Identify functions where code spends most time
– Instrument those functions
– Measure code performance using hardware counters
– Identify inefficient regions of source code and cause of

inefficiencies

• Parallel
– Assess overall parallel performance (scaling)
– Identify functions where code spends most time (this may

change at high core counts)
– Instrument those functions
– Identify load balancing issues, serial regions
– Identify communication bottlenecks--use tracing to help

identify cause and effect

© 2017 Pittsburgh Supercomputing Center

Some Take-Home Points

• Good choice of (serial and parallel) algorithm is most
important

• Performance measurement can help you determine if
algorithm and implementation is good

• Do compiler and MPI parameter optimizations first
• Check/optimize serial performance before investing a lot

of time in improving scaling
• Choose the right tool for the job
• Know when to stop: 80:20 rule
• XSEDE (and PRACE) staff collaborate with code

developers to help with performance engineering of
parallel codes (Extended Collaborative Support)

© 2017 Pittsburgh Supercomputing Center

Questions?

blood@psc.edu

	Performance Engineering �of Parallel Applications
	Acknowledgment
	Outline for Performance Sessions
	Fitting algorithms to hardware…and vice versa
	Code Development and Optimization Process
	Performance engineering workflow
	Slide Number 7
	Hardware Counters
	Features of PAPI
	Measurement Techniques
	Inclusive and Exclusive Profiles
	Applying Performance Tools to Improve Parallel Performance of the UNRES MD code
	Structure of UNRES
	Performance Engineering: Procedure
	Is There a Performance Problem?
	Detecting Performance Problems
	Use a Sampling Tool for Initial Performance Check
	UNRES: Serial Performance
	UNRES: Parallel Performance
	Performance Engineering: Procedure
	Which Functions are Important?
	Contributions of Functions
	UNRES Function Summary
	Performance Engineering: Procedure
	Digging Deeper: Instrument Key Functions
	Choose a tool: there are many!
	TAU: Tuning and Analysis Utilities
	General Instructions for TAU
	Using TAU with Makefiles
	Tiny Routines: High Overhead
	Reducing Overhead
	Selective Instrumentation File
	Selective Instrumentation File
	Getting a Call Path with TAU
	Getting Call Path Information
	Isolate regions of code execution
	Key UNRES Functions in TAU �(with Startup Time)
	Key UNRES Functions (MD Time Only)
	Performance Engineering: Procedure
	Detecting Serial Performance Issues
	Create a Derived Metric in Paraprof Manager
	Perf of EELEC (peak is 2)
	Performance Engineering: Procedure
	Do compiler optimization first!�EELEC – After forcing inlining with compiler
	Further Info on Serial Optimization
	Performance Engineering: Procedure
	TAU Recipe #1: Detecting Serial Bottlenecks
	Serial Bottleneck Detection in UNRES: Function Scaling 	(2-32 cores)
	TAU Recipe #2: Detecting Parallel Load Imbalance
	Load Imbalance Detection in UNRES
	Major Serial Bottleneck and Load Imbalance in UNRES Eliminated
	Next Iteration of Performance Engineering �with Optimized Code
	Use Call Path Information: MPI Calls
	Performance Engineering: Procedure
	Some Take-Home Points
	Questions?��blood@psc.edu

