
John Urbanic
Parallel Computing Scientist

Pittsburgh Supercomputing Center

Carnegie Mellon University Physics Department

Copyright 2021

Big Data

Let’s get the boring stuff out of the way now.

• Run the Big Data setup script:

~training/Setup

• Logout and then login again, so that the proper modules are in effect.

• Start an interactive session.

interact

Preliminary Exercise

How does all this fit together?

AI
ML

DL
nee Neural Nets

Big

Data

Character Recognition

Capchas

Chess

Go

Character Recognition

Capchas

Chess

Go

DL

Big data is a broad term for data sets so large or complex that traditional
data processing applications are inadequate.

—Wikipedia

Once there was only small data...

A classic amount of “small” data

Find a tasty appetizer – Easy!

Find something to use up these
oranges – grumble…

What if….

Less sophisticated is sometimes better…

Get all articles from 2007.

Get all papers on “fault tolerance”
– grumble and cough

“Chronologically” or “geologically” organized.
Familiar to some of you at tax time.

Indexing will determine your individual performance.
Teamwork can scale that up.

The culmination of centuries...

Find books on Modern Physics (DD# 539)

Find books by Wheeler

where he isn’t the first author – grumble… Your only hope…

Then data started to grow.

1956 IBM Model 350

5 MB of data!

But still pricey. $

Better think about what
you want to save.

And finally got BIG.

8TB for $130

= 10 TB *

*Actually, a silly estimate. The original reference actually mentions a more accurate 208TB, and in
2013 the digital collection alone was 3PB.

Whys:
Storage got cheap
So why not keep it all?
Today data is a hot commodity $
And we got better at generating it

Facebook
Deep Learning
IoT
Science...

Pan-STARRS

telescope
http://pan-

starrs.ifa.hawaii.edu/publ

ic/

Genome sequencers
(Wikipedia Commons)

Collections
Horniman museum:

http://www.horniman.ac.uk

/

get_involved/blog/bioblitz-

insects-reviewed

Legacy

documents
Wikipedia

Commons

Environmental sensors:

Water temperature

profiles from tagged

hooded seals
http://www.arctic.noaa.gov/report1

1/biodiv_whales_walrus.html

A better sense of biggish
Size
• 1000 Genomes Project

• AWS hosted
• 260TB

• Common Crawl
• Hosted on Bridges
• 300-800TB+

Throughput
• Square Kilometer Array

• Building now
• Exabyte of raw data/day – compressed to 10PB

• Internet of Things (IoT) / motes
• Endless streaming

Records
• GDELT (Global Database of Events, Language, and Tone) (also soon to be hosted on Bridges)

• Only about 2.5TB per year, but...
• 250M rows and 59 fields (BigTable)
• “during periods with relatively little content, maximal translation accuracy can be achieved, with accuracy linearly degraded as needed to cope with

increases in volume in order to ensure that translation always finishes within the 15 minute window…. and prioritizes the highest quality material,
accepting that lower-quality material may have a lower-quality translation to stay within the available time window.”

3 V's of Big Data
• Volume
• Velocity
• Variety

Why it wasn’t fashionable:

• Schemas set in stone:
• Need to define before we can add data
• Not a fit for agile development

"What do you mean we didn't plan to keep logs of
everyone's heartbeat?"

• Queries often require accessing multiple indexes and joining
and sorting multiple tables

• Sharding isn’t trivial

• Caching is tough
• ACID (Atomicity,Consistency,Isolation,Durability) in a transaction is costly.

Good Ol’ SQL couldn't keep up.
Oracle

SELECT NAME, NUMBER, FROM PHONEBOOK Payroll

Name Number Address

Inventory

Product Number Address

Phonebook

Name Number Address

• Certainly agile (no schema)

• Certainly scalable (linear in most ways: hardware, storage, cost)

• Good hash might deliver fast lookup

• Sharding, backup, etc. could be simple

• Often used for “session” information: online games, shopping carts

So we gave up: Key-Value
Redis, Memcached, Amazon DynamoDB, Riak, Ehcache

GET foo foo bar

2 fast

6 0

9 0

0 9

text pic

1055 stuff

bar foo

GET cart:joe:15~4~7~0723

Sure, giving up ACID buys us a lot performance, but doesn't our crude organization
cost us something? Yes, but remember these guys?

How does a pile of unorganized data solve our
problems?

This is what they
look like today.

• Value must be an object the DB can understand

• Common are: XML, JSON, Binary JSON and nested thereof

• This allows server side operations on the data

Document

GET foo

GET plant=daisy

• Can be quite complex: Linq query, JavaScript function

• Different DB’s have different update/staleness paradigms

foo

2

6 JSON

9 XML

0 Binary JSON

bar JSON
XML

12 XML
XML

<CATALOG>

<PLANT>

<COMMON>Bloodroot</COMMON>

<BOTANICAL>Sanguinaria canadensis</BOTANICAL>

<ZONE>4</ZONE>

<LIGHT>Mostly Shady</LIGHT>

<PRICE>$2.44</PRICE>

<AVAILABILITY>031599</AVAILABILITY>

</PLANT>

<PLANT>

<COMMON>Columbine</COMMON>

<BOTANICAL>Aquilegia canadensis</BOTANICAL>

<ZONE>3</ZONE>

<LIGHT>Mostly Shady</LIGHT>

<PRICE>$9.37</PRICE>

<AVAILABILITY>030699</AVAILABILITY>

</PLANT>

.

.

• No predefined schema

• Can think of this as a 2-D key-value store: the value may be a key-value
store itself

• Different databases
aggregate data differently
on disk with different
optimizations

Wide Column Stores
Google BigTable

SELECT Name, Occupation FROM People WHERE key IN (199, 200, 207);

Key

Joe Email: joe@gmail Web: www.joe.com

Fred Phone: 412-555-3412 Email: fred@yahoo.com Address: 200 S. Main
Street

Julia Email: julia@apple.com

Mac Phone: 214-555-5847

• Great for semantic web

• Great for graphs

Graph
Titan, GEMS

From PDX Graph Meetup

• Can be hard to visualize

• Serialization can be difficult

• Queries more complicated

SPARQL (W3C Standard)

• Uses Resource Description Framework format
• triple store

• RDF Limitations
• No named graphs
• No quantifiers or general statements

• “Every page was created by some author”
• “Cats meow”

• Requires a schema or ontology (RDFS) to define rules
• "The object of ‘homepage’ must be a

Document.“
• "Link from an actor to a movie must

connect an object of type Person to an
object of type Movie."

SELECT ?name ?email

WHERE {

?person a foaf:Person.

?person foaf:name ?name.

?person foaf:mbox ?email. }

Queries
SPARQL, Cypher

Cypher (Neo4J only)

• No longer proprietary
• Stores whole graph, not just triples
• Allows for named graphs
• …and general Property Graphs (edges

and nodes may have values)

SMATCH (Jack:Person

{ name:‘Jack Nicolson’})-[:ACTED_IN]-(movie:Movie)

RETURN movie

Graph Databases
• These are not curiosities, but are behind some of the most high-profile pieces of Web

infrastructure.

• They are definitely big data.

Microsoft Bing Knowledge Graph Search and conversations. ~2 billion primary entries
~55 billion facts

Facebook ~50 million primary entries
~500 million assertions

Google Knowledge Graph Search and conversations. ~1 billion entries
~55 billion facts

LinkedIn graph 590 million members
30 million companies

Noy, Goa, Jain. Communications of the ACM, August 2019

What kind
of databases

are they?

Hadoop & Spark

These are both frameworks for distributing and retrieving data. Hadoop is focused on
disk based data and a basic map-reduce scheme, and Spark evolves that in several
directions that we will get in to. Both can accommodate multiple types of databases and
achieve their performance gains by using parallel workers.

Frameworks for Data

The mother of Hadoop was necessity. It is
trendy to ridicule its primitive design, but
it was the first step.

We have repurposed many of these
blocks to build a better framework.

SQL
DataFrame

Hadoop Ecosystem Lives On

And lots
more...

Spark Capabilities
(i.e. Hadoop shortcomings)

• Performance
• First, use RAM
• Also, be smarter

• Ease of Use
• Python, Scala, Java first class citizens

• New Paradigms
• SparkSQL
• Streaming
• MLib
• GraphX
• …more

But using Hadoop as
the backing store is a
common and sensible
option.

Same Idea (improved)

Driver
Python
Scala
Java

RAM

CPU

RAM

CPU

RAM

CPU

RAM

CPU

RAM

CPU

RAM

CPU

RDD
Resilient Distributed Dataset

Spark Formula

1. Create/Load RDD
Webpage visitor IP address log

2. Transform RDD
”Filter out all non-U.S. IPs”

3. But don’t do anything yet!
Wait until data is actually needed
Maybe apply more transforms (“Distinct IPs)

4. Perform Actions that return data
Count “How many unique U.S. visitors?”

>>> lines_rdd = sc.textFile("nasa_serverlog_20190404.tsv")

Simple Example

Read into RDD

Spark Context

The first thing a Spark program requires is a context, which interfaces with some kind of cluster to use. Our
pyspark shell provides us with a convenient sc, using the local filesystem, to start. Your standalone programs
will have to specify one:

from pyspark import SparkConf, SparkContext
conf = SparkConf().setMaster("local").setAppName("Test_App")
sc = SparkContext(conf = conf)

You would typically run these scripts like so:

spark-submit Test_App.py

>>> lines_rdd = sc.textFile("nasa_serverlog_20190404.tsv")

>>> HubbleLines_rdd = lines_rdd.filter(lambda line: "Hubble" in line)

>>> HubbleLines_rdd.count()
47

>>> HubbleLines_rdd.first()
'www.nasa.gov\shuttle/missions/61-c/Hubble.gif‘

Simple Example

Read into RDD

Transform

Actions

Lambdas

We’ll see a lot of these. A lambda is simply a function that is too simple to deserve its own subroutine.
Anywhere we have a lambda we could also just name a real subroutine that could go off and do anything.

When all you want to do is see if “given an input variable line, is “stanford” in there?”, it isn’t worth the
digression.

Most modern languages have adopted this nicety.

Common Transformations
Transformation Result

map(func) Return a new RDD by passing each element through func.

filter(func) Return a new RDD by selecting the elements for which func
returns true.

flatMap(func) func can return multiple items, and generate a sequence,
allowing us to “flatten” nested entries (JSON) into a list.

distinct() Return an RDD with only distinct entries.

sample(…) Various options to create a subset of the RDD.

union(RDD) Return a union of the RDDs.

intersection(RDD) Return an intersection of the RDDs.

subtract(RDD) Remove argument RDD from other.

cartesian(RDD) Cartesian product of the RDDs.

parallelize(list) Create an RDD from this (Python) list (using a spark context).

Full list at http://spark.apache.org/docs/latest/api/python/reference/api/pyspark.RDD.html#pyspark.RDD

Same Size

Fewer
Elements

More
Elements

Common Actions

Action Result

collect() Return all the elements from the RDD.

count() Number of elements in RDD.

countByValue() List of times each value occurs in the RDD.

reduce(func) Aggregate the elements of the RDD by providing a function
which combines any two into one (sum, min, max, …).

first(), take(n) Return the first, or first n elements.

top(n) Return the n highest valued elements of the RDDs.

takeSample(…) Various options to return a subset of the RDD..

saveAsTextFile(path) Write the elements as a text file.

foreach(func) Run the func on each element. Used for side-effects (updating
accumulator variables) or interacting with external systems.

Full list at http://spark.apache.org/docs/latest/api/python/reference/api/pyspark.RDD.html#pyspark.RDD

Transformations vs. Actions

Transformations go from one RDD to another1.

Actions bring some data back from the RDD.

Transformations are where the Spark machinery can do its magic with lazy evaluation and
clever algorithms to minimize communication and parallelize the processing. You want to
keep your data in the RDDs as much as possible.

Actions are mostly used either at the end of the analysis when the data has been distilled
down (collect), or along the way to "peek" at the process (count, take).

1 Yes, some of them also create an RDD (parallelize), but you get the idea.

Pair RDDs

• Key/Value organization is a simple, but often very efficient schema, as we mentioned
in our NoSQL discussion.

• Spark provides special operations on RDDs that contain key/value pairs. They are
similar to the general ones that we have seen.

• On the language (Python, Scala, Java) side key/values are simply tuples. If you have an
RDD all of whose elements happen to be tuples of two items, it is a Pair RDD and you
can use the key/value operations that follow.

Pair RDD Transformations

Transformation Result

reduceByKey(func) Reduce values using func, but on a key by key basis. That is,
combine values with the same key.

groupByKey() Combine values with same key. Each key ends up with a list.

sortByKey() Return an RDD sorted by key.

mapValues(func) Use func to change values, but not key.

keys() Return an RDD of only keys.

values() Return an RDD of only values.

Note that all of the regular transformations are available as well.

Pair RDD Actions

Action Result

countByKey() Count the number of elements for each key.

lookup(key) Return all the values for this key.

As with transformations, all of the regular actions are available to Pair RDDs, and there
are some additional ones that can take advantage of key/value structure.

Two Pair RDD Transformations

Transformation Result

subtractByKey(otherRDD) Remove elements with a key present in other RDD.

join(otherRDD) Inner join: Return an RDD containing all pairs of elements with
matching keys in self and other. Each pair of elements will be
returned as a (k, (v1, v2)) tuple, where (k, v1) is in self and (k,
v2) is in other.

leftOuterJoin(otherRDD) For each element (k, v) in self, the resulting RDD will either
contain all pairs (k, (v, w)) for w in other, or the pair (k, (v,
None)) if no elements in other have key k.

rightOuterJoin(otherRDD) For each element (k, w) in other, the resulting RDD will either
contain all pairs (k, (v, w)) for v in this, or the pair (k, (None, w))
if no elements in self have key k.

cogroup(otherRDD) Group data from both RDDs by key.

>>> best_customers_rdd = sc.parallelize([("Joe", "$103"), ("Alice", "$2000"), ("Bob", "$1200")])

Joins Are Quite Useful

Any database designer can tell you how common joins are. Let's look at a simple
example. We have (here we create it) an RDD of our top purchasing customers.

And an RDD with all of our customers' addresses.

>>> customer_addresses_rdd = sc.parallelize([("Joe", "23 State St."), ("Frank", "555 Timer Lane"), ("Sally", "44
Forest Rd."), ("Alice", "3 Elm Road"), ("Bob", "88 West Oak")])

To create a mailing list of special coupons for those favored customers we can use a
join on the two datasets.

>>> promotion_mail_rdd = best_customers_rdd.join(customer_addresses_rdd)

>>> promotion_mail_rdd.collect()
[('Bob', ('$1200', '88 West Oak')), ('Joe', ('$103', '23 State St.')), ('Alice', ('$2000', '3 Elm Road'))]

Shakespeare, a Data Analytics Favorite

Applying data analytics to the works of Shakespeare has become all the rage. Whether determining the legitimacy of
his authorship (it wasn’t Marlowe) or if Othello is actually a comedy (perhaps), it is amazing how much publishable
research has sprung from the recent analysis of 400 year old text.

We’re going to do some exercises here using a text file containing all of his works.

Who needs this Spark stuff?
As we do our first Spark exercises, you might think of several ways to accomplish these tasks that you already know. For example, Python
Pandas is a fine way to do our following problem, and it will probably work on your laptop reasonably well. But they do not scale well*.

However we are learning how to leverage scalable techniques that work on very big data. Shortly, we will encounter problems that are
considerable in size, and you will leave this workshop knowing how to harness very large resources.

Searching the Complete Works of William Shakespeare for patterns is a lot different from searching the entire Web (perhaps as the 800TB
Common Crawl dataset).

So everywhere you see an RDD, realize that it is a actually a parallel databank that could scale to PBs.

* See Panda's creator Wes McKinney's "10 Things I Hate About Pandas" at
https://wesmckinney.com/blog/apache-arrow-pandas-internals/

Some Simple Problems
We have an input file, Complete _Shakespeare.txt, that you can also find at http://www.gutenberg.org/ebooks/100.
You might find it useful to have http://spark.apache.org/docs/latest/api/python/reference/api/pyspark.RDD.html#pyspark.RDD in a browser
window.

If you are starting from scratch on the login node:
1) interact 2) cd BigData/Shakespeare 3) module load spark 4) pyspark
...

>>> rdd = sc.textFile("Complete_Shakespeare.txt")

Let’s try a few simple exercises.

1) Count the number of lines

2) Count the number of words (hint: Python "split" is a workhorse)

3) Count unique words

4) Count the occurrence of each word

5) Show the top 5 most frequent words

These last two are a bit more challenging. One approach is
to think “key/value”. If you go that way, think about which
data should be the key and don’t be afraid to swap it
about with value. This is a very common manipulation
when dealing with key/value organized data.

http://www.gutenberg.org/ebooks/100

>>> lines_rdd = sc.textFile("Complete_Shakespeare.txt")
>>>
>>> lines_rdd.count()
124787
>>>
>>> words_rdd = lines_rdd.flatMap(lambda x: x.split())
>>> words_rdd.count()
904061
>>>
>>> words_rdd.distinct().count()
67779
>>>

Some Simple Answers

Next, I know I'd like to end up with a pair RDD of sorted word/count pairs:

(23407, 'the'), (19540,'I'), (15682, 'to'), (15649, 'of') ...

Why not just words_rdd.countByValue()? It is an action that gives us a massive Python
unsorted dictionary of results:

... 1, 'precious-princely': 1, 'christenings?': 1, 'empire': 11, 'vaunts': 2, 'Lubber's': 1,
'poet.': 2, 'Toad!': 1, 'leaden': 15, 'captains': 1, 'leaf': 9, 'Barnes,': 1, 'lead': 101, 'Hell':
1, 'wheat,': 3, 'lean': 28, 'Toad,': 1, 'trencher!': 2, '1.F.2.': 1, 'leas': 2, 'leap': 17, ...

Where to go next? Sort this in Python or try to get back into an RDD? If this is truly BIG
data, we want to remain as an RDD until we reach our final results. So, no.

>>> lines_rdd = sc.textFile("Complete_Shakespeare.txt")
>>>
>>> lines_rdd.count()
124787
>>>
>>> words_rdd = lines_rdd.flatMap(lambda x: x.split())
>>> words_rdd.count()
904061
>>>
>>> words_rdd.distinct().count()
67779
>>>
>>> key_value_rdd = words_rdd.map(lambda x: (x,1))
>>>
>>> key_value_rdd.take(5)
[('The', 1), ('Project', 1), ('Gutenberg', 1), ('EBook', 1), ('of', 1)]
>>>
>>> word_counts_rdd = key_value_rdd.reduceByKey(lambda x,y: x+y)
>>> word_counts_rdd.take(5)
[('fawn', 11), ('considered-', 1), ('Fame,', 3), ('mustachio', 1), ('protested,', 1)]
>>>
>>> flipped_rdd = word_counts_rdd.map(lambda x: (x[1],x[0]))
>>> flipped_rdd.take(5)
[(11, 'fawn'), (1, 'considered-'), (3, 'Fame,'), (1, 'mustachio'), (1, 'protested,')]
>>>
>>> results_rdd = flipped_rdd.sortByKey(False)
>>> results_rdd.take(5)
[(23407, 'the'), (19540, 'I'), (18358, 'and'), (15682, 'to'), (15649, 'of')]
>>>

Some Harder Answers

Turn these into k/v pairs

Reduce to get words counts

Flip keys and values

so we can sort on

wordcount instead of

words.

results_rdd = lines_rdd.flatMap(lambda x: x.split()).map(lambda x: (x,1)).reduceByKey(lambda x,y: x+y).map(lambda x: (x[1],x[0])).sortByKey(False)

Things data
scientists do.

Some Homework Problems

To do research-level text analysis, we generally want to clean up our input. Here are some of the kinds of things you
could do to get a more meaningful distinct word count.

1) Remove punctuation. Often punctuation is just noise, and it is here. Do a Map and/or Filter (some punctuation is
attached to words, and some is not) to eliminate all punctuation from our Shakespeare data. Note that if you are
familiar with regular expressions, Python has a ready method to use those.

2) Remove stop words. Stop words are common words that are also often uninteresting ("I", "the", "a"). You can
remove many obvious stop words with a list of your own, and the MLlib that we are about to investigate has a
convenient StopWordsRemover() method with default lists for various languages.

3) Stemming. Recognizing that various different words share the same root ("run", "running") is important, but not so
easy to do simply. Once again, Spark brings powerful libraries into the mix to help. A popular one is the Natural
Language Tool Kit. You should look at the docs, but you can give it a quick test quite easily:

import nltk
from nltk.stem.porter import *
stemmer = PorterStemmer()
stems_rdd = words_rdd.map(lambda x: stemmer.stem(x))

IO Formats
Spark has an impressive, and growing, list of input/output formats it supports. Some important
ones:

• Text
• CSV
• SQL type Query/Load

• JSON (can infer schema)
• Parquet
• Hive
• XML
• Sequence (Hadoopy key/value)
• Databases: JDBC, Cassandra, HBase, MongoDB, etc.

• Compression (gzip…)

And it can interface directly with a variety of filesystems: local, HDFS, Lustre, Amazon S3,...

Spark Streaming

Spark addresses the need for streaming processing of data with a API that divides the
data into batches, which are then processed as RDDs.

There are features to enable:

• Fast recovery from failures or timeouts
• Load balancing
• Integration with static data and interactive queries
• Integration with other components (SQL, Machine Learning)

15% of the "global datasphere"
(quantification of the amount of data
created, captured, and replicated across
the world) is currently real-time. That
number is growing quickly both in
absolute terms and as a percentage.

A Few Words About DataFrames

As mentioned earlier, an appreciation for having some defined structure to your data has come back
into vogue. For one, because it simply makes sense and naturally emerges in many applications. Often
even more important, it can greatly aid optimization, especially with the Java VM that Spark uses.

For both of these reasons, you will see that the newest set of APIs to Spark are DataFrame based. Sound
leading-edge? This is simply SQL type columns. Very similar to Python pandas DataFrames (but based on
RDDs, so not exactly).

We haven't prioritized them here because they aren't necessary, and some of the pieces aren't mature.
But some of the latest features use them.

And while they would just complicate our basic examples, they are often simpler for real research
problems. So don't shy away from using them.

Creating DataFrames

It is very pretty intuitive to utilize DataFrames. Your elements just have labeled columns.

A row RDD is the basic way to go from RDD to DataFrame, and back, if necessary. A "row" is just a tuple.

>>> row_rdd = sc.parallelize([("Joe","Pine St.","PA",12543), ("Sally","Fir Dr.","WA",78456),
("Jose","Elm Pl.","ND",45698)])

>>>
>>> aDataFrameFromRDD = spark.createDataFrame(row_rdd, ["name", "street", "state", "zip"])
>>> aDataFrameFromRDD.show()
+-----+--------+-----+-----+
| name| street|state| zip|
+-----+--------+-----+-----+
| Joe|Pine St.| PA|12543|
|Sally| Fir Dr.| WA|78456|
| Jose| Elm Pl.| ND|45698|
+-----+--------+-----+-----+

Creating DataFrames

You will come across DataFrames created without a schema. They get default column names.

>>> noSchemaDataFrame = spark.createDataFrame(row_rdd)
>>> noSchemaDataFrame.show()
+-----+--------+---+-----+
| _1| _2| _3| _4|
+-----+--------+---+-----+
| Joe|Pine St.| PA|12543|
|Sally| Fir Dr.| WA|78456|
| Jose| Elm Pl.| ND|45698|
+-----+--------+---+-----+

And you can create them inline as well.

>>> directDataFrame = spark.createDataFrame([("Joe","Pine St.","PA",12543), ("Sally","Fir Dr.","WA",78456),
("Jose","Elm Pl.","ND",45698)],

["name", "street", "state", "zip"])

Datasets
Spark has added a variation (technically a superset)
of DataFrames called Datasets. For compiled
languages with strong typing (Java and Scala) these
provide static typing and can detect some errors at
compile time.

This is not relevant to Python or R.

Just Spark DataFrames making life easier...

Data from https://github.com/spark-examples/pyspark-examples/raw/master/resources/zipcodes.json

{"RecordNumber":1,"Zipcode":704,"ZipCodeType":"STANDARD","City":"PARC PARQUE","State":"PR","LocationType":"NOT ACCEPTABLE","Lat":17.96,"Long":-66.22,"Xaxis":0.38,"Yaxis":-0.87,"Zaxis":0.3,"WorldRegion":"NA","Country":"US",
{"RecordNumber":2,"Zipcode":704,"ZipCodeType":"STANDARD","City":"PASEO COSTA DEL SUR","State":"PR","LocationType":"NOT ACCEPTABLE","Lat":17.96,"Long":-66.22,"Xaxis":0.38,"Yaxis":-0.87,"Zaxis":0.3,"WorldRegion":"NA","Country":"US","LocationT
{"RecordNumber":10,"Zipcode":709,"ZipCodeType":"STANDARD","City":"BDA SAN LUIS","State":"PR","LocationType":"NOT ACCEPTABLE","Lat":18.14,"Long":-66.26,"Xaxis":0.38,"Yaxis":-0.86,"Zaxis":0.31,"WorldRegion":"NA","Country":"US","Location

>>> df = spark.read.json("zipcodes.json")
>>> df.printSchema()
root
|-- City: string (nullable = true)
|-- Country: string (nullable = true)
|-- Decommisioned: boolean (nullable = true)
|-- EstimatedPopulation: long (nullable = true)
|-- Lat: double (nullable = true)
|-- Location: string (nullable = true)
|-- LocationText: string (nullable = true)
|-- LocationType: string (nullable = true)
|-- Long: double (nullable = true)
|-- Notes: string (nullable = true)
|-- RecordNumber: long (nullable = true)
|-- State: string (nullable = true)
|-- TaxReturnsFiled: long (nullable = true)
|-- TotalWages: long (nullable = true)
|-- WorldRegion: string (nullable = true)
|-- Xaxis: double (nullable = true)
|-- Yaxis: double (nullable = true)
|-- Zaxis: double (nullable = true)
|-- ZipCodeType: string (nullable = true)
|-- Zipcode: long (nullable = true)

>>> df.show()
+-------------------+-------+-------------+-------------------+-----+--------------------
| City|Country|Decommisioned|EstimatedPopulation| Lat| Location
+-------------------+-------+-------------+-------------------+-----+--------------------
| PARC PARQUE| US| false| null|17.96|NA-US-PR-PARC PARQUE
|PASEO COSTA DEL SUR| US| false| null|17.96|NA-US-PR-PASEO CO...
| BDA SAN LUIS| US| false| null|18.14|NA-US-PR-BDA SAN ...
| CINGULAR WIRELESS| US| false| null|32.72|NA-US-TX-CINGULAR...
| FORT WORTH| US| false| 4053|32.75| NA-US-TX-FORT WORTH
| FT WORTH| US| false| 4053|32.75| NA-US-TX-FT WORTH
| URB EUGENE RICE| US| false| null|17.96|NA-US-PR-URB EUGE...
| MESA| US| false| 26883|33.37| NA-US-AZ-MESA
| MESA| US| false| 25446|33.38| NA-US-AZ-MESA
| HILLIARD| US| false| 7443|30.69| NA-US-FL-HILLIARD
| HOLDER| US| false| null|28.96| NA-US-FL-HOLDER
| HOLT| US| false| 2190|30.72| NA-US-FL-HOLT
| HOMOSASSA| US| false| null|28.78| NA-US-FL-HOMOSASSA
| BDA SAN LUIS| US| false| null|18.14|NA-US-PR-BDA SAN ...
| SECT LANAUSSE| US| false| null|17.96|NA-US-PR-SECT LAN...
| SPRING GARDEN| US| false| null|33.97|NA-US-AL-SPRING G...
| SPRINGVILLE| US| false| 7845|33.77|NA-US-AL-SPRINGVILLE
| SPRUCE PINE| US| false| 1209|34.37|NA-US-AL-SPRUCE PINE
| ASH HILL| US| false| 1666| 36.4| NA-US-NC-ASH HILL
| ASHEBORO| US| false| 15228|35.71| NA-US-NC-ASHEBORO
+-------------------+-------+-------------+-------------------+-----+--------------------

Speaking of pandas, or SciPy, or...

Some of you may have experience with the many Python libraries that accomplish some of
these tasks. Immediately relevant to today, pandas allows us to sort and query data, and SciPy
provides some nice clustering algorithms. So why not just use them?

The answer is that Spark does these things in the context of having potentially huge, parallel
resources at hand. We don't notice it as Spark is also convenient, but behind every Spark call:

• every RDD could be many TB in size

• every transform could use many thousands of cores and TB of memory

• every algorithm could also use those thousands of cores

So don't think of Spark as just a data analytics library because our exercises are modest. You
are learning how to cope with Big Data.

Other Scalable Alternatives: Dask

Of the many alternatives to play with data on
your laptop, there are only a few that aspire to
scale up to big data. The only one, besides Spark,
that seems to have any traction is Dask.

Numpy like operations

import dask.array as da
a = da.random.random(size=(10000, 10000),

chunks=(1000, 1000))
a + a.T - a.mean(axis=0)

Dataframes implement Pandas

import dask.dataframe as dd
df = dd.read_csv('/.../2020-*-*.csv')
df.groupby(df.account_id).balance.sum()

Pieces of Scikit-Learn

from dask_ml.linear_model import \
LogisticRegression
lr = LogisticRegression()
lr.fit(train, test)

It attempts to retain more of the "laptop feel" of
your toy codes, making for an easier port. The
tradeoff is that the scalability is a lot more
mysterious. If it doesn't work - or someone hasn't
scaled the piece you need - your options are
limited.

At this time, I'd say it is riskier, but academic
projects can often entertain more risk than industry.

Drill Down?

Using MLlib

One of the reasons we use spark is for easy access to powerful data analysis tools. The MLlib library
gives us a machine learning library that is easy to use and utilizes the scalability of the Spark system.

It has supported APIs for Python (with NumPy), R, Java and Scala.

We will use the Python version in a generic manner that looks very similar to any of the above
implementations.

There are good example documents for the clustering routine we are using, as well as alternative
clustering algorithms, here:

http://spark.apache.org/docs/latest/mllib-clustering.html

I suggest you use these pages for your Spark work.

http://spark.apache.org/docs/latest/mllib-clustering.html

Clustering
Clustering is a very common operation for finding grouping in data and has countless applications. This is a very simple
example, but you will find yourself reaching for a clustering algorithm frequently in pursuing many diverse machine
learning objectives, sometimes as one part of a pipeline.

Weight

S
iz

e

Coin Sorting

Clustering
As intuitive as clustering is, it presents challenges to implement in an efficient and robust manner.

You might think this is trivial to implement in lower dimensional spaces.

But it can get tricky even there.

We will start with 5000 2D points. We want to figure out how many clusters there are, and their centers. Let’s fire up
pyspark and get to it…

Sometimes you know how many clusters you have to start with. Often you don’t.
How hard can it be to count clusters? How many are here?

____ __
/ __/__ ___ _____/ /__
_\ \/ _ \/ _ `/ __/ '_/
/__ / .__/_,_/_/ /_/_\ version 1.6.0

/_/

Using Python version 2.7.5 (default, Nov 20 2015 02:00:19)
SparkContext available as sc, HiveContext available as sqlContext.
>>>
>>> rdd1 = sc.textFile("5000_points.txt")
>>>
>>> rdd2 = rdd1.map(lambda x: x.split())
>>> rdd3 = rdd2.map(lambda x: [int(x[0]),int(x[1])])
>>>

Finding Clusters

Read into RDD

Transform to words and integers

br06% interact
...
r288%
r288% module load spark
r288% pyspark

>>> rdd1 = sc.textFile("5000_points.txt")
>>> rdd1.count()
5000
>>> rdd1.take(4)
[' 664159 550946', ' 665845 557965', ' 597173 575538', ' 618600 551446']
>>> rdd2 = rdd1.map(lambda x:x.split())
>>> rdd2.take(4)
[['664159', '550946'], ['665845', '557965'], ['597173', '575538'], ['618600', '551446']]
>>> rdd3 = rdd2.map(lambda x: [int(x[0]),int(x[1])])
>>> rdd3.take(4)
[[664159, 550946], [665845, 557965], [597173, 575538], [618600, 551446]]
>>>

Finding Our Way

____ __
/ __/__ ___ _____/ /__
_\ \/ _ \/ _ `/ __/ '_/
/__ / .__/_,_/_/ /_/_\ version 1.6.0

/_/

Using Python version 2.7.5 (default, Nov 20 2015 02:00:19)
SparkContext available as sc, HiveContext available as sqlContext.
>>>
>>> rdd1 = sc.textFile("5000_points.txt")
>>>
>>> rdd2 = rdd1.map(lambda x:x.split())
>>> rdd3 = rdd2.map(lambda x: [int(x[0]),int(x[1])])
>>>
>>>
>>> from pyspark.mllib.clustering import KMeans

Finding Clusters

Read into RDD

Transform

Import Kmeans

Finding Clusters

What is the
exact answer?

____ __
/ __/__ ___ _____/ /__
_\ \/ _ \/ _ `/ __/ '_/
/__ / .__/_,_/_/ /_/_\ version 1.6.0

/_/

Using Python version 2.7.5 (default, Nov 20 2015 02:00:19)
SparkContext available as sc, HiveContext available as sqlContext.
>>>
>>> rdd1 = sc.textFile("5000_points.txt")
>>>
>>> rdd2 = rdd1.map(lambda x:x.split())
>>> rdd3 = rdd2.map(lambda x: [int(x[0]),int(x[1])])
>>>
>>> from pyspark.mllib.clustering import KMeans
>>>
>>> for clusters in range(1,30):
... model = KMeans.train(rdd3, clusters)
... print (clusters, model.computeCost(rdd3))
...

Finding Clusters

Let’s see results for 1-30 cluster tries

1 5.76807041184e+14
2 3.43183673951e+14
3 2.23097486536e+14
4 1.64792608443e+14
5 1.19410028576e+14
6 7.97690150116e+13
7 7.16451594344e+13
8 4.81469246295e+13
9 4.23762700793e+13
10 3.65230706654e+13
11 3.16991867996e+13
12 2.94369408304e+13
13 2.04031903147e+13
14 1.37018893034e+13
15 8.91761561687e+12
16 1.31833652006e+13
17 1.39010717893e+13
18 8.22806178508e+12
19 8.22513516563e+12
20 7.79359299283e+12
21 7.79615059172e+12
22 7.70001662709e+12
23 7.24231610447e+12
24 7.21990743993e+12
25 7.09395133944e+12
26 6.92577789424e+12
27 6.53939015776e+12
28 6.57782690833e+12
29 6.37192522244e+12

>>> for trials in range(10):
... print
... for clusters in range(12,18):
... model = KMeans.train(rdd3,clusters)
... print (clusters, model.computeCost(rdd3))

Right Answer?

12 2.45472346524e+13
13 2.00175423869e+13
14 1.90313863726e+13
15 1.52746006962e+13
16 8.67526114029e+12
17 8.49571894386e+12

12 2.62619056924e+13
13 2.90031673822e+13
14 1.52308079405e+13
15 8.91765957989e+12
16 8.70736515113e+12
17 8.49616440477e+12

12 2.5524719797e+13
13 2.14332949698e+13
14 2.11070395905e+13
15 1.47792736325e+13
16 1.85736955725e+13
17 8.42795740134e+12

12 2.31466242693e+13
13 2.10129797745e+13
14 1.45400177021e+13
15 1.52115329071e+13
16 1.41347332901e+13
17 1.31314086577e+13

12 2.47927778784e+13
13 2.43404436887e+13
14 2.1522702068e+13
15 8.91765000665e+12
16 1.4580927737e+13
17 8.57823507015e+12

12 2.31466520037e+13
13 1.91856542103e+13
14 1.49332023312e+13
15 1.3506302755e+13
16 8.7757678836e+12
17 1.60075548613e+13

12 2.5187054064e+13
13 1.83498739266e+13
14 1.96076943156e+13
15 1.41725666214e+13
16 1.41986217172e+13
17 8.46755159547e+12

12 2.38234539188e+13
13 1.85101922046e+13
14 1.91732620477e+13
15 8.91769396968e+12
16 8.64876051004e+12
17 8.54677681587e+12

12 2.5187054064e+13
13 2.04031903147e+13
14 1.95213876047e+13
15 1.93000628589e+13
16 2.07670831868e+13
17 8.47797102908e+12

12 2.39830397362e+13
13 2.00248378195e+13
14 1.34867337672e+13
15 2.09299321238e+13
16 1.32266735736e+13
17 8.50857884943e+12

>>> for trials in range(10): #Try ten times to find best result
... for clusters in range(12, 16): #Only look in interesting range
... model = KMeans.train(rdd3, clusters)
... cost = model.computeCost(rdd3)
... centers = model.clusterCenters #Let’s grab cluster centers
... if cost<1e+13: #If result is good, print it out
... print (clusters, cost)
... for coords in centers:
... print (int(coords[0]), int(coords[1]))
... break
...

Find the Centers

15 8.91761561687e+12
852058 157685
606574 574455
320602 161521
139395 558143
858947 546259
337264 562123
244654 847642
398870 404924
670929 862765
823421 731145
507818 175610
801616 321123
617926 399415
417799 787001
167856 347812
15 8.91765957989e+12
670929 862765
139395 558143
244654 847642
852058 157685
617601 399504
801616 321123
507818 175610
337264 562123
858947 546259
823421 731145
606574 574455
167856 347812
398555 404855
417799 787001
320602 161521

Fit?

0

100000

200000

300000

400000

500000

600000

700000

800000

900000

1000000

0 200000 400000 600000 800000 1000000

Series1

16 Clusters

0

100000

200000

300000

400000

500000

600000

700000

800000

900000

1000000

0 200000 400000 600000 800000 1000000

Series1

0

100000

200000

300000

400000

500000

600000

700000

800000

900000

1000000

0 200000 400000 600000 800000 1000000

Series1

Dimensionality Reduction
A look ahead to next Thursday

We are going to find a recurring theme throughout machine learning:

• Our data naturally resides in higher dimensions

• Reducing the dimensionality makes the problem more tractable

• And simultaneously provides us with insight

This last two bullets highlight the principle that "learning" is often finding an effective compressed
representation.

As we return to this theme, we will highlight these slides with our Dimensionality
Reduction badge so that you can follow this thread and appreciate how fundamental
it is.

Why all these dimensions?

The problems we are going to address, as well as the ones you are likely to encounter, are naturally highly
dimensional. If you are new to this concept, lets look at an intuitive example to make it less abstract.

Category Purchase Total ($)

Children's Clothing $800

Pet Supplies $0

Cameras (Dash, Security, Baby) $450

Containers (Storage) $350

Romance Book $0

Remodeling Books $80

Sporting Goods $25

Children's Toys $378

Power Tools $0

Computers $0

Garden $0

Children's Books $180

... ...

< 2
9

0
0

 C
atego

ries >

This is a 2900 dimensional vector.

Why all these dimensions?

If we apply our newfound clustering expertise, we might find we have 80 clusters (with an acceptable
error).

People spending on “child’s toys “ and “children’s clothing” might cluster with “child’s books” and, less
obvious, "cameras (Dashcams, baby monitors and security cams)", because they buy new cars and are
safety conscious. We might label this cluster "Young Parents". We also might not feel obligated to label the
clusters at all. We can now represent any customer by their distance from these 80 clusters.

Customer Representation

Cluster Young
Parents

College
Athlete

Auto
Enthusiast

Knitter Steelers Fan Shakespeare
Reader

Sci-Fi Fan Plumber ...

Distance 0.02 2.3 1.4 8.4 2.2 14.9 3.3 0.8 ...

We have now accomplished two things:
• we have compressed our data
• learned something about our customers (who to send a dashcam promo to).

80 dimensional vector.

Curse of Dimensionality

This is a good time to point out how our intuition can lead us astray as we increase the dimensionality of our problems - which we will
certainly be doing - and to a great degree. There are several related aspects to this phenomenon, often referred to as the Curse of
Dimensionality. One root cause of confusion is that our notion of Euclidian distance starts to fail in higher dimensions.

These plots show the distributions of pairwise distances
between randomly distributed points within differently
dimensioned unit hypercubes. Notice how all the points start
to be about the same distance apart.

Once can imagine this makes life harder on a clustering
algorithm!

There are other surprising effects: random vectors are
almost all orthogonal; the unit sphere takes almost no
volume in the unit square. These cause all kinds of problems
when generalizing algorithms from our lowly 3D world.

Metrics

Even the definition of distance (the metric) can vary based upon application. If you are solving chess problems, you might find the
Manhattan distance (or taxicab metric) to be most useful.

Image Source: Wikipedia

For comparing text strings, we might choose one of dozens of different metrics. For spell checking you might want one that is
good for phonetic distance, or maybe edit distance. For natural language processing (NLP), you probably care more about tokens.

For genomics, you might care more about string sequences.

Some useful measures don't even qualify as metrics (usually because they fail the triangle inequality: a + b ≥ c).

Alternative DR: Principal Component Analysis

3D Data Set Maybe mostly 1D!

Alternative DR: Principal Component Analysis

Flatter 2D-ish Data Set View down the 1st Princ. Comp.

Why So Many Alternatives?

Let's look at one more example today. Suppose we are tying to do a Zillow type of analysis and predict home values based upon available
factors. We may have an entry (vector) for each home that captures this kind of data:

Home Data

Latitude 4833438 north

Longitude 630084 east

Last Sale Price $ 480,000

Last Sale Year 1998

Width 62

Depth 40

Floors 3

Bedrooms 3

Bathrooms 2

Garage 2

Yard Width 84

Yard Depth 60

... ...

There may be some opportunities to reduce the dimension of the vector here. Perhaps clustering on the geographical coordinates...

Principal Component Analysis Fail

1st Component Off
Data Not Very Linear

D x W Is Not Linear
But (DxW) Fits Well

Non-Linear PCA?
A Better Approach Tomorrow!

Why Would An Image Have 784 Dimensions?

MNIST 28x28
greyscale images

Central Hypothesis of Modern DL

Data Lives On
A Lower Dimensional

Manifold

3

6

4

0

8

9

7

2

1

Maybe Very Contiguous

Maybe Less So

9

5

7

3

4

Images from Wikipedia

import numpy as np
import matplotlib.pyplot as plt
from sklearn import (datasets, decomposition, manifold, random_projection)

def draw(X, title):
plt.figure()
plt.xlim(X.min(0)[0],X.max(0)[0]); plt.ylim(X.min(0)[1],X.max(0)[1])
plt.xticks([]); plt.yticks([])
plt.title(title)
for i in range(X.shape[0]):

plt.text(X[i, 0], X[i, 1], str(y[i]), color=plt.cm.Set1(y[i] / 10.))

digits = datasets.load_digits(n_class=6)
X = digits.data
y = digits.target

rp = random_projection.SparseRandomProjection(n_components=2, random_state=42)
X_projected = rp.fit_transform(X)
draw(X_projected, "Sparse Random Projection of the digits")

X_pca = decomposition.PCA(n_components=2).fit_transform(X)
draw(X_pca, "PCA (Two Components)")

tsne = manifold.TSNE(n_components=2, init='pca', random_state=0)
X_tsne = tsne.fit_transform(X)
draw(X_tsne, "t-SNE Embedding")

plt.show()

Testing These Ideas With Scikit-learn
Sparse

How does all this fit together?

AI
ML

DL
nee Neural Nets

Big

Data

Character Recognition

Capchas

Chess

Go

Character Recognition

Capchas

Chess

Go

DL

The
Journey
Ahead

John Urbanic
Parallel Computing Scientist

Pittsburgh Supercomputing Center

Copyright 2021

A Recommender System

Obvious Applications
We are now advanced enough that we can aspire to a serious application. One of the
most significant applications for some very large websites (Netflix, Amazon, etc.) are
recommender systems.

“Customers who bought this product also bought these.”

“Here are some movies you might like…”

As well as many types of targeted advertising. However those of you with less
commercial ambitions will find the core concepts here widely applicable to many types
of data that require dimensionality reduction techniques.

Let’s go all Netflix

1) https://en.wikipedia.org/wiki/Netflix_Prize

Netflix once (2009) had a $1,000,000 contest to with just this very problem(1). We will start
with a similar dataset. It looks like:

Movie Dataset (Movie ID, Title, Genre):
31,Dangerous Minds (1995),Drama
32,Twelve Monkeys (a.k.a. 12 Monkeys) (1995),Mystery|Sci-Fi|Thriller
34,Babe (1995),Children|Drama

Ratings Dataset (User ID, Movie ID, Rating, Timestamp):
2,144,3.0,835356016
2,150,5.0,835355395
2,153,4.0,835355441
2,161,3.0,835355493

We won’t use the genres or timestamp fields for our analysis.

Starting Point

What we are given is a large (100,480,507 ratings) and sparse (that is a little better than 1%
of 8,532,958,530 matrix elements) list of ratings for users:

5 3 1

1

3 5

3 3 3

2 4 5 5

← 17,770 Movies →

←
 4

8
0

,1
8

9

 U
se

rs
 →

Objective
For any given user we would like to use their ratings, in combination with all the existing user
ratings, to determine which movies they might prefer. For example, a user might really like
Annie Hall and The Purple Rose of Cairo (both Woody Allen movies, although our database
doesn’t have that information). Can we infer from other users that they might like Zelig? That
would be finding a latent variable. These might also include affinities for an actor, or director,
or genre, etc.

3 5 2 3 5 2 4 3 1 4 3 1 3 2 1

1 4 1 3 2 1 3 2 5 5 3 4 3 4 1

1 3 5 3 3 5 5 4 2 2 2 5 4 3 3

4 1 2 4 2 3 5 2 3 1 1 3 1 2 3

2 2 4 1 4 4 3 5 1 2 4 5 2 5 4

Movies

U
se

rs

Matrix Factorization
This resulting large, dense, matrix would be too big to actually keep around. We need to find a
compressed representation where we can reproduce any given element we request. This will have to be
lossy.

There are different ways to decompose a matrix. We will approximate our matrix as the product of two
smaller matrices. The rank, k, of the new matrices will determine how accurate this approximation will be.

UR PX

k

k

Lossy Compression Becomes Approximate Solution

The process of lossy compressing the sparse R matrix is also going to provide us a means to
construct its missing members (the dense matrix).

UR PX

We will call our smaller matrices a user feature matrix and a product feature matrix. This
approximation is also going to smooth out the zeros and in the process give us our projected
ratings.

Why are we getting this two-for-one?

This provides an excellent introduction to a profound perspective on Machine Learning.

UR PX

One way of thinking about learning is that we are compressing everything we know about
the world into a smaller representation. Sometimes, but not usually, this can be seen
explicitly, as here.

You can do this too.
Let's say you worked in a 1990's video store, but had never heard of Steven Spielberg. If you
paid careful attention to the rental records you might notice that many people that rented E.T.
also rented Raiders of the Lost Ark and Jaws and Close Encounters and Jurassic Park. So if a
customer told you they really enjoyed an Indiana Jones movie, you might suggest they try
Jurassic Park. All without knowing who the director was. You have inferred a hidden
connection (latent effect).

One can imaging many such hidden categories in our movie data: actors, genres, release
dates, etc.

You can also imagine that the renters themselves possess these preferences hidden in their
own data. Without it being explicitly noted, we might easily see that Mary likes
documentaries and Joe loves movies with Cher.

We are thinking of reduced ways to represent these people ("likes documentaries")
vs. the raw data!

Matrix Factorization
The rank k can now also be thought of as the number of latent effects we are incorporating.
But it will not be as intuitively explicit as a simple category, and we will have to investigate an
optimal size for this parameter.

UR
PX

k

k

Defining our error

In ML, defining the error (or loss, or cost) is often the core of defining the objective solution.
Once we define the error, we can usually plug it into a canned solver which can minimize it.
Defining the error can be obvious, or very subtle, or have multiple acceptable methods.

Clustering: For k-means we simply used the geometrical distance. It was actually the sum of
the squared distances, but you get the idea.

Image Recognition: If our algorithm tags a picture of a cat as a dog, is that a larger error than
if it tags it as a horse? Or a car? How would you quantify these?

Recommender: We will take the Mean Square Error distance between our given matrix and
our approximation as a starting point.

Mean Square Error plus Regularization

We will also add a term to discourage overfitting by damping large elements of U or P. This is
called regularization and versions appear frequently in error functions.

Error = R – UxP 2 + (Penalty for large elements)

The notation means “sum the squares of all the elements and then take the square root”.

You may wonder how we can have “too little” error – the pursuit of which leads to overfitting.
Think back to our clustering problem. We could drive the error as low as we wanted by adding
more clusters (up to 5000!). But we weren’t really finding new clusters. Variations of this
phenomena occur throughout machine learning.

Overfitting

One solution is to keep using

higher order terms, but to

penalize them. These

regularization hyperparameters

that enable our solution to have

good generalization will show

up again in our workshop, and

throughout your machine

learning endeavors.

Think of this as Occam's Razor

for machine learning.

Mean Square Error plus Regularization
Here is exactly our error term with regularization. MLLIB scales this factor for us based on the
number of ratings (this tweak is called ALS-WR).

Error = R – UxP 2 + (U2 + P2)

The notation means “sum the squares of all the elements and then take the square root”.

Additionally, we need to account for our missing (unrated) values. We just zero out those
terms. Here it is term-by-term:

Error = I,j wI,j (RI,j – (UxP)ij)
2 + (U2 + P2) wI,j =0 if RI,j is unknown

Note that we now have two hyperparameters, k and , that we need to select intelligently.

Alternating Least Squares
To actually find the U and P that minimize this error we need a solving algorithm.

SGD, a go-to for many ML problems and one we will use later, is not practical for billions of
parameters, which we can easily reach with these types of problems. We are dealing with
Users X Items elements here.

Instead we use Alternating Least Squares (ALS), also built into MLLIB.

• Alternating least squares cheats by holding one of the arrays constant and then doing a
classic least squares fit on the other array parameters. Then it does this for the other array.

• This is easily parallelized.

• It works well with sparse inputs. The algorithm scales linearly with observed entries.

Here Is Our Plan

U
PX

Given

Ratings

Sparse

Use

ALS

Predicted

Ratings

Dense

=

Training, Validation and Test Data

We use the training data to create our solution, the UxP matrix here.

The validation data is used to verify we are not overfitting: to stop training after

enough iterations, to adjust or k here, or to optimize the many other

hyperparameters you will encounter in ML.

The test data must be saved to judge our final solution.

Reusing, or subtly mixing, the training, validation and test data is a frequently cause of

confusion.

What proportions of your data to use for each of these is somewhat empirical and you

might want to start by copying from similar work or examples using your same solver.

There are techniques to slice-

and-cycle share the training

and validation data, called

cross-validation. Don't try this

with the test data!

Reality Check By Test Data

Test

Data

Training

Data

Alternatively, these new

points could be our

validation data that we

use to find the right

regularization scheme

(favor lower older

polynomials). We would

still use test data after we

are happy with that
model.

Used The
Test Data

For
Training

We can also say

that this model has

low bias and high

variance.

Where does our data come into play?

U
PX

Given

Ratings

Sparse

Use

ALS
Predicted

Ratings

Dense

=

Training
Data

k

Training
Data

Validation
Data

Test
Data

Validation
Data

Test
Data

Let’s Build A Recommender
We have all the tools we need, so let’s fire up PySpark and create a scalable recommender.
Our plan is:

1. Load and parse data files
2. Create ALS model
3. Train it with varying ranks (k) to find reasonable hyperparameters

4. Add a new user
5. Get top recommendations for new user

____ __
/ __/__ ___ _____/ /__

_\ \/ _ \/ _ `/ __/ '_/
/__ / .__/_,_/_/ /_/_\ version 3.0.0-preview2

/_/

Using Python version 3.7.4 (default, Aug 13 2019 20:35:49)
SparkSession available as 'spark'.
>>>
>>> ratings_raw_RDD = sc.textFile('ratings.csv')
>>> ratings_RDD = ratings_raw_RDD.map(lambda line: line.split(",")).map(lambda tokens: (int(tokens[0]),int(tokens[1]),float(tokens[2])))
>>>
>>> training_RDD, validation_RDD, test_RDD = ratings_RDD.randomSplit([3, 1, 1], 0)
>>>
>>> predict_validation_RDD = validation_RDD.map(lambda x: (x[0], x[1]))
>>> predict_test_RDD = test_RDD.map(lambda x: (x[0], x[1]))

Building a Recommender

We load in the ratings file and parse out the (user,movie,rating) data.

We then split it training, validation and test data RDDs.

Then we strip the ratings off the validation and test data for our prediction RDDs.

>>> training_RDD.take(4)
[(1, 1029, 3.0), (1, 1061, 3.0), (1, 1263, 2.0), (1, 1371, 2.5)]
>>> predict_validation_RDD.take(4)
[(1, 1129), (1, 1172), (1, 1405), (1, 2105)]
>>>

login06% interact
...
r288%
r288% module load spark
r288% pyspark

____ __
/ __/__ ___ _____/ /__

_\ \/ _ \/ _ `/ __/ '_/
/__ / .__/_,_/_/ /_/_\ version 1.6.0

/_/

Using Python version 2.7.5 (default, Nov 20 2015 02:00:19)
SparkContext available as sc, HiveContext available as sqlContext.
>>>
>>> ratings_raw_RDD = sc.textFile('ratings.csv')
>>> ratings_RDD = ratings_raw_RDD.map(lambda line: line.split(",")).map(lambda tokens: (int(tokens[0]),int(tokens[1]),float(tokens[2])))
>>>
>>> training_RDD, validation_RDD, test_RDD = ratings_RDD.randomSplit([3, 1, 1], 0)
>>>
>>> predict_validation_RDD = validation_RDD.map(lambda x: (x[0], x[1]))
>>> predict_test_RDD = test_RDD.map(lambda x: (x[0], x[1]))
>>>
>>>
>>> from pyspark.mllib.recommendation import ALS
>>> import math
>>>
>>> seed = 5
>>> iterations = 10
>>> regularization = 0.1
>>> trial_ranks = [4, 8, 12]
>>> lowest_error = float('inf')

Import mllib and set some variables we are about to use.

>>> ratings_raw_RDD = sc.textFile('ratings.csv')
>>> ratings_RDD = ratings_raw_RDD.map(lambda line: line.split(",")).map(lambda tokens: (int(tokens[0]),int(tokens[1]),float(tokens[2])))
>>>
>>> training_RDD, validation_RDD, test_RDD = ratings_RDD.randomSplit([3, 1, 1], 0)
>>>
>>> predict_validation_RDD = validation_RDD.map(lambda x: (x[0], x[1]))
>>> predict_test_RDD = test_RDD.map(lambda x: (x[0], x[1]))
>>>
>>>
>>> from pyspark.mllib.recommendation import ALS
>>> import math
>>>
>>> seed = 5
>>> iterations = 10
>>> regularization = 0.1
>>> trial_ranks = [4, 8, 12]
>>> lowest_error = float('inf')
>>>
>>> for k in trial_ranks:
>>> model = ALS.train(training_RDD, k, seed=seed, iterations=iterations, lambda_=regularization)
>>> #Coercing ((u,p),r) tuple format to accomodate join
>>> predictions_RDD = model.predictAll(predict_validation_RDD).map(lambda r: ((r[0], r[1]), r[2]))
>>> ratings_and_preds_RDD = validation_RDD.map(lambda r: ((r[0], r[1]), r[2])).join(predictions_RDD)
>>> error = math.sqrt(ratings_and_preds_RDD.map(lambda r: (r[1][0] - r[1][1])**2).mean())
>>> print ('For k=',k,'the RMSE is', error)
>>> if error < lowest_error:
>>> best_k = k
>>> lowest_error = error
>>>
For k= 4 the RMSE is 0.9357038861004305
For k= 8 the RMSE is 0.9438612625240242
For k= 12 the RMSE is 0.9390638322819614
>>>
>>> print('The best rank is size', best_k)
The best rank is size 4

Run our ALS model on various ranks to see which is best.

>>> for k in trial_ranks:
>>> model = ALS.train(training_RDD, k, seed=seed, iterations=iterations, lambda_=regularization)
>>> #Coercing ((u,p),r) tuple format to accomodate join
>>> predictions_RDD = model.predictAll(predict_validation_RDD).map(lambda r: ((r[0], r[1]), r[2]))
>>> ratings_and_preds_RDD = validation_RDD.map(lambda r: ((r[0], r[1]), r[2])).join(predictions_RDD)
>>> error = math.sqrt(ratings_and_preds_RDD.map(lambda r: (r[1][0] - r[1][1])**2).mean())
>>> print ('For k=',k,'the RMSE is', error)
>>> if error < lowest_error:
>>> best_k = k
>>> lowest_error = error
>>>
For k= 4 the RMSE is 0.9357038861004305
For k= 8 the RMSE is 0.9438612625240242
For k= 12 the RMSE is 0.9390638322819614

The ALS.train() routines gives us:

>>> model.predictAll(predict_validation_RDD).take(2)
[Rating(user=463, product=4844, rating=2.7640960482284322), Rating(user=380, product=4844, rating=2.399938320644199)]

To do the "RMS error" math, we want elements with a (Given,Predicted) value for each (User,Movie) key:

>>> ratings_and_preds_RDD.take(2)
[((119, 145), (4.0, 2.903215714486778)), ((407, 5995), (4.5, 4.604779028840272))]

So the next two lines get us from here to there.

>>> for k in trial_ranks:
>>> model = ALS.train(training_RDD, k, seed=seed, iterations=iterations, lambda_=regularization)
>>> #Coercing ((u,p),r) tuple format to accomodate join
>>> predictions_RDD = model.predictAll(predict_validation_RDD).map(lambda r: ((r[0], r[1]), r[2]))
>>> ratings_and_preds_RDD = validation_RDD.map(lambda r: ((r[0], r[1]), r[2])).join(predictions_RDD)
>>> error = math.sqrt(ratings_and_preds_RDD.map(lambda r: (r[1][0] - r[1][1])**2).mean())
>>> print ('For k=',k,'the RMSE is', error)
>>> if error < lowest_error:
>>> best_k = k
>>> lowest_error = error
>>>
For k= 4 the RMSE is 0.9357038861004305
For k= 8 the RMSE is 0.9438612625240242
For k= 12 the RMSE is 0.9390638322819614

>>> model.predictAll(predict_validation_RDD).map(lambda r: ((r[0], r[1]), r[2])).take(2)
[((463, 4844), 2.7640960482284322), ((380, 4844), 2.399938320644199)]

That map gets us to a pair RDD with [(User,Movie), rating] format.

Now do this with the validation RDD:

>>> validation_RDD.take(2)
[(1, 1129, 2.0), (1, 1172, 4.0)]
>>>
>>> validation_RDD.map(lambda r: ((r[0], r[1]), r[2])).take(2)
[((1, 1129), 2.0), ((1, 1172), 4.0)]

>>> for k in trial_ranks:
>>> model = ALS.train(training_RDD, k, seed=seed, iterations=iterations, lambda_=regularization)
>>> #Coercing ((u,p),r) tuple format to accomodate join
>>> predictions_RDD = model.predictAll(predict_validation_RDD).map(lambda r: ((r[0], r[1]), r[2]))
>>> ratings_and_preds_RDD = validation_RDD.map(lambda r: ((r[0], r[1]), r[2])).join(predictions_RDD)
>>> error = math.sqrt(ratings_and_preds_RDD.map(lambda r: (r[1][0] - r[1][1])**2).mean())
>>> print ('For k=',k,'the RMSE is', error)
>>> if error < lowest_error:
>>> best_k = k
>>> lowest_error = error
>>>
For k= 4 the RMSE is 0.9357038861004305
For k= 8 the RMSE is 0.9438612625240242
For k= 12 the RMSE is 0.9390638322819614

To collect rating values for common (User,Movie) keys calls for a join()

Data before join:

>>> predictions_RDD.take(2)
[((463, 4844), 2.7640960482284322), ((380, 4844), 2.399938320644199)]
>>>
>>> validation_RDD.map(lambda r: ((r[0], r[1]), r[2])).take(2)
[((1, 1129), 2.0), ((1, 1172), 4.0)]

Results of join:

>>> ratings_and_preds_RDD.take(2)
[((119, 145), (4.0, 2.903215714486778)), ((407, 5995), (4.5, 4.604779028840272))]

>>> for k in trial_ranks:
>>> model = ALS.train(training_RDD, k, seed=seed, iterations=iterations, lambda_=regularization)
>>> #Coercing ((u,p),r) tuple format to accomodate join
>>> predictions_RDD = model.predictAll(predict_validation_RDD).map(lambda r: ((r[0], r[1]), r[2]))
>>> ratings_and_preds_RDD = validation_RDD.map(lambda r: ((r[0], r[1]), r[2])).join(predictions_RDD)
>>> error = math.sqrt(ratings_and_preds_RDD.map(lambda r: (r[1][0] - r[1][1])**2).mean())
>>> print ('For k=',k,'the RMSE is', error)
>>> if error < lowest_error:
>>> best_k = k
>>> lowest_error = error
>>>
For k= 4 the RMSE is 0.9357038861004305
For k= 8 the RMSE is 0.9438612625240242
For k= 12 the RMSE is 0.9390638322819614
>>>
>>> print('The best rank is size', best_k)
The best rank is size 4
>>>
>>> model = ALS.train(training_RDD, best_k, seed=seed, iterations=iterations, lambda_=regularization)
>>> predictions_RDD = model.predictAll(predict_test_RDD).map(lambda r: ((r[0], r[1]), r[2]))
>>> ratings_and_preds_RDD = test_RDD.map(lambda r: ((r[0], r[1]), r[2])).join(predictions_RDD)
>>> error = math.sqrt(ratings_and_preds_RDD.map(lambda r: (r[1][0] - r[1][1])**2).mean())
>>> print ('For testing data the RMSE is %s' % (error))
For testing data the RMSE is 0.9406803213698973

This is our fully tested model (smallest dataset).
These results were reported against the test_RDD.

.

.

.
>>>
>>> new_user_ID = 0
>>> new_user = [

(0,100,4), # City Hall (1996)
(0,237,1), # Forget Paris (1995)
(0,44,4), # Mortal Kombat (1995)
(0,25,5), # etc....
(0,456,3),
(0,849,3),
(0,778,2),
(0,909,3),
(0,478,5),
(0,248,4)
]

>>>
>>> new_user_RDD = sc.parallelize(new_user)
>>>
>>> updated_ratings_RDD = ratings_RDD.union(new_user_RDD)
>>>
>>> updated_model = ALS.train(updated_ratings_RDD, best_rank, seed=seed, iterations=iterations,
lambda_=regularization)
>>>

Adding a User

I checked that ID 0 is unused with a quick
ratings_RDD.filter(lambda x: x[0]=='0').count()"

Note that we are joining, and then training, with ALL data

now - the ratings RDD. We are confident we know what

we are doing and are done testing.

.

.

.
>>>
>>> movies_raw_RDD = sc.textFile('movies.csv')
>>> movies_RDD = movies_raw_RDD.map(lambda line: line.split(",")).map(lambda tokens: (int(tokens[0]),tokens[1]))
>>>
>>> new_user_rated_movie_ids = map(lambda x: x[1], new_user)
>>> new_user_unrated_movies_RDD = movies_RDD.filter(lambda x: x[0] not in new_user_rated_movie_ids).map(lambda x: (new_user_ID, x[0]))
>>> new_user_recommendations_RDD = updated_model.predictAll(new_user_unrated_movies_RDD)

Let’s get some predictions…

>>> new_user_unrated_movies_RDD.take(3)
[(0, 1), (0, 2), (0, 3)]
>>> new_user_recommendations_RDD.take(2)
[Rating(user=0, product=4704, rating=3.606560950463134), Rating(user=0, product=4844, rating=2.1368358868224036)]

.

.

.
>>>
>>> product_rating_RDD = new_user_recommendations_RDD.map(lambda x: (x.product, x.rating))
>>> new_user_recommendations_titled_RDD = product_rating_RDD.join(movies_RDD)
>>> new_user_recommendations_formatted_RDD = new_user_recommendations_titled_RDD.map(lambda x: (x[1][1],x[1][0]))
>>>
>>> top_recomends = new_user_recommendations_formatted_RDD.takeOrdered(10, key=lambda x: -x[1])
>>> for line in top_recomends: print (line)
...
('Maelstr\xf6m (2000)', 6.2119957527973355)
('King Is Alive', 6.2119957527973355)
('Innocence (2000)', 6.2119957527973355)
('Dangerous Beauty (1998)', 6.189751978239315)
('Bad and the Beautiful', 6.005879185976944)
('Taste of Cherry (Ta'm e guilass) (1997)', 5.96074819887891)
('The Lair of the White Worm (1988)', 5.958594728894122)
('Mifune's Last Song (Mifunes sidste sang) (1999)', 5.934820295566816)
('Business of Strangers', 5.899232655788708)
>>>
>>> one_movie_RDD = sc.parallelize([(0, 800)]) # Lone Star (1996)
>>> rating_RDD = updated_model.predictAll(one_movie_RDD)
>>> rating_RDD.take(1)
[Rating(user=0, product=800, rating=4.100848893773136)]

Let see some titles

>>> new_user_recommendations_titled_RDD.take(2)
[(111360, (1.0666741148393921, 'Lucy (2014)')), (49530, (1.8020006042285814, 'Blood Diamond (2006)'))]
>>> new_user_recommendations_formatted_RDD.take(2)
[('Lucy (2014)', 1.0666741148393921), ('Blood Diamond (2006)', 1.8020006042285814)]

Looks like we can sort
by value after all!

Behind the scenes
takeOrdered() just does
the key/value swap and
SortByKey that we
previously did
ourselves.

Exercises

1) We noticed that out top ranked movies have ratings higher than 5. This makes perfect sense as there is no ceiling
implied in our algorithm and one can imagine that certain combinations of factors would combine to create “better
than anything you’ve seen yet” ratings.

Maybe you have a friend that really likes Anime. Many of her ratings for Anime are 5. And she really likes Scarlett
Johansson and gives her movies lots of 5s. Wouldn’t it be fair to consider her rating for Ghost in the Shell to be a 7/5?

Nevertheless, we may have to constrain our ratings to a 1-5 range. Can you normalize the output from our
recommender such that our new users only sees ratings in that range?

2) We haven’t really investigated our convergence rate. We specify 10 iterations, but is that reasonable? Graph your
error against iterations and see if that is a good number.

3) I mentioned that our larger dataset does benefit from a rank of 12 instead of 4 (as one might expect). The larger
datasets (ratings-large.csv and movies-large.csv) are available to you in ~training/LargeMovies. Prove that the error is
less with a larger rank. How does this dataset benefit from more iterations? Is it more effective to spend the
computation cycles on more iterations or larger ranks?

4) We could have used the very similar pyspark.ml.recommendation API, which uses dataframes. It requires a little
more type checking, so we used the classic RDD API pyspark.mllib.recommendation instead - for conciseness. Try
porting this example to that API. Is this a better way to work?

