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Big Data via Spark



Let’s get the boring stuff out of the way now.

• Copy the Big Data exercise directory from the training directory to your home directory.

cp -r ~training/BigData .

• Start an interactive session.

interact

Preliminary    Exercise



How does all this fit together?

AI
ML

DL
nee Neural Nets
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Big data is a broad term for data sets so large or complex that traditional 
data processing applications are inadequate.

—Wikipedia



Once there was only small data...

A classic amount of “small” data

Find a tasty appetizer – Easy!

Find something to use up these
oranges – grumble…

What if….



Then data started to grow.

1956 IBM Model 350

5 MB of data!

But still pricey.  $

Better think about what 
you want to save.



And finally got BIG.

8TB for $130

= 10 TB *

*Actually, a silly estimate.  The original reference actually mentions a more accurate 208TB, and in 
2013 the digital collection alone was 3PB.

Whys:
Storage got cheap
So why not keep it all?
Today data is a hot commodity $
And we got better at generating it

Facebook
Deep Learning
IoT
Science...

Pan-STARRS 

telescope
http://pan-

starrs.ifa.hawaii.edu/publ

ic/

Genome sequencers
(Wikipedia Commons)

Collections
Horniman museum: 

http://www.horniman.ac.uk

/

get_involved/blog/bioblitz-

insects-reviewed

Legacy 

documents
Wikipedia 

Commons

Environmental sensors: 

Water temperature 

profiles from tagged 

hooded seals
http://www.arctic.noaa.gov/report1

1/biodiv_whales_walrus.html



A better sense of biggish
Size
• 1000 Genomes Project

• AWS hosted
• 260TB

• Common Crawl
• Hosted on Bridges
• 300-800TB+

Throughput
• Square Kilometer Array

• Building now
• Exabyte of raw data/day – compressed to 10PB

• Internet of Things (IoT) / motes
• Endless streaming

Records
• GDELT (Global Database of Events, Language, and Tone) (also soon to be hosted on Bridges)

• Only about 2.5TB per year, but...
• 250M rows and 59 fields (BigTable)
• “during periods with relatively little content, maximal translation accuracy can be achieved, with accuracy linearly degraded as needed to cope with 

increases in volume in order to ensure that translation always finishes within the 15 minute window…. and prioritizes the highest quality material, 
accepting that lower-quality material may have a lower-quality translation to stay within the available time window.”



Why it wasn’t fashionable:

• Schemas set in stone:
• Need to define before we can add data
• Not a fit for agile development

"What do you mean we didn't plan to keep logs of 
everyone's heartbeat?"

• Queries often require accessing multiple indexes and joining
and sorting multiple tables

• Sharding isn’t trivial 

• Caching is tough
• ACID (Atomicity,Consistency,Isolation,Durability) in a Transaction is costly.

Good Ol’ SQL couldn't keep up.
Oracle

SELECT  NAME, NUMBER, FROM PHONEBOOK Payroll

Name Number Address

Inventory

Product Number Address

Phonebook

Name Number Address



• Certainly agile (no schema)

• Certainly scalable (linear in most ways: hardware, storage, cost)

• Good hash might deliver fast lookup

• Sharding, backup, etc. could be simple

• Often used for “session” information: online games, shopping carts

So we gave up: Key-Value
Redis, Memcached, Amazon DynamoDB, Riak, Ehcache

GET foo foo bar

2 fast

6 0

9 0

0 9

text pic

1055 stuff

bar foo

GET cart:joe:15~4~7~0723



Sure, giving up ACID buys us a lot performance, but doesn't our crude organization 
cost us something? Yes, but remember these guys?

How does a pile of unorganized data solve our 
problems?

This is what they 
look like today.



• Value must be an object the DB can understand

• Common are: XML, JSON, Binary JSON and nested thereof

• This allows server side operations on the data

Document

GET foo

GET plant=daisy

• Can be quite complex: Linq query, JavaScript function

• Different DB’s have different update/staleness paradigms

OBJECT

foo

2

6 JSON

9 XML

0 Binary JSON

bar JSON
XML

12 XML
XML

<CATALOG>

<PLANT>

<COMMON>Bloodroot</COMMON>

<BOTANICAL>Sanguinaria canadensis</BOTANICAL>

<ZONE>4</ZONE>

<LIGHT>Mostly Shady</LIGHT>

<PRICE>$2.44</PRICE>

<AVAILABILITY>031599</AVAILABILITY>

</PLANT>

<PLANT>

<COMMON>Columbine</COMMON>

<BOTANICAL>Aquilegia canadensis</BOTANICAL>

<ZONE>3</ZONE>

<LIGHT>Mostly Shady</LIGHT>

<PRICE>$9.37</PRICE>

<AVAILABILITY>030699</AVAILABILITY>

</PLANT>

.

.



• No predefined schema

• Can think of this as a 2-D key-value store: the value may be a key-value 
store itself

• Different databases
aggregate data differently
on disk with different
optimizations

Wide Column Stores
Google BigTable

SELECT Name, Occupation FROM People WHERE key IN (199, 200, 207);

Key

Joe Email: joe@gmail Web: www.joe.com

Fred Phone: 412-555-3412 Email: fred@yahoo.com Address: 200 S. Main 
Street

Julia Email: julia@apple.com

Mac Phone: 214-555-5847



• Great for semantic web

• Great for graphs 

Graph
Titan, GEMS

From PDX Graph Meetup

• Can be hard to visualize

• Serialization can be difficult

• Queries more complicated



What kind
of databases

are they?

Hadoop & Spark



These are both frameworks for distributing and retrieving data.  Hadoop is focused on 
disk based data and a basic map-reduce scheme, and Spark evolves that in several 
directions that we will get in to. Both can accommodate multiple types of databases and 
achieve their performance gains by using parallel workers.

Frameworks for Data

The mother of Hadoop was necessity. It is 
trendy to ridicule its primitive design, but 
it was the first step.

We have repurposed many of these 
blocks to build a better framework.

SQL
DataFrame



Hadoop  Impact

And lots
more...



Spark Capabilities
(i.e. Hadoop shortcomings)

• Performance
• First, use RAM
• Also, be smarter

• Ease of Use
• Python, Scala, Java first class citizens

• New Paradigms
• SparkSQL
• Streaming
• MLib
• GraphX
• …more

But using Hadoop as
the backing store is a
common and sensible
option.



Same Idea (improved)

Driver
Python
Scala
Java

RAM

CPU

RAM

CPU

RAM

CPU

RAM

CPU

RAM

CPU

RAM

CPU

RDD
Resilient  Distributed  Dataset



Spark Formula

1. Create/Load RDD
Webpage visitor IP address log

2. Transform RDD
”Filter out all non-U.S. IPs”

3. But don’t do anything yet!
Wait until data is actually needed
Maybe apply more transforms (“Distinct IPs)

4. Perform Actions that return data
Count “How many unique U.S. visitors?”



>>> lines_rdd = sc.textFile("nasa_19950801.tsv")

Simple Example

Read into RDD

Spark Context

The first thing a Spark program requires is a context, which interfaces with some kind of cluster to use.  Our 
pyspark shell provides us with a convenient  sc, using the local filesystem, to start.  Your standalone programs 
will have to specify one:

from pyspark import SparkConf, SparkContext
conf = SparkConf().setMaster("local").setAppName("Test_App")
sc = SparkContext(conf = conf)

You would typically run these scripts like so:

spark-submit Test_App.py



>>> lines_rdd = sc.textFile("nasa_19950801.tsv")

>>> stanfordLines_rdd = lines_rdd.filter(lambda line: "stanford" in line)

>>> stanfordLines_rdd.count()
47

>>> stanfordLines_rdd.first()
u'glim.stanford.edu\t-\t807258357\tGET\t/shuttle/missions/61-c/61-c-patch-small.gif\t‘

Simple Example

Read into RDD

Transform

Actions

Lambdas

We’ll see a lot of these. A lambda is simply a function that is too simple to deserve its own subroutine. 
Anywhere we have a lambda we could also just name a real subroutine that could go off and do anything.

When all you want to do is see if “given an input variable line, is “stanford” in there?”, it isn’t worth the 
digression.

Most modern languages have adopted this nicety.



Common Transformations
Transformation Result

map(func) Return a new RDD by passing each element through func.

filter(func) Return a new RDD by selecting the elements for which func
returns true.

flatMap(func) func can return multiple items, and generate a sequence, 
allowing us to “flatten” nested entries (JSON) into a list.

distinct() Return an RDD with only distinct entries.

sample(…) Various options to create a subset of the RDD.

union(RDD) Return a union of the RDDs.

intersection(RDD) Return an intersection of the RDDs.

subtract(RDD) Remove argument RDD from other.

cartesian(RDD) Cartesian product of the RDDs.

parallelize(list) Create an RDD from this (Python) list (using a spark context).

Full list at http://spark.apache.org/docs/latest/api/python/pyspark.html#pyspark.RDD

Same Size

Fewer 
Elements

More 
Elements



Common Actions

Action Result

collect() Return all the elements from the RDD.

count() Number of elements in RDD.

countByValue() List of times each value occurs in the RDD.

reduce(func) Aggregate the elements of the RDD by providing a function 
which combines any two into one (sum, min, max, …).

first(), take(n) Return the first, or first n elements.

top(n) Return the n highest valued elements of the RDDs.

takeSample(…) Various options to return a subset of the RDD..

saveAsTextFile(path) Write the elements as a text file.

foreach(func) Run the func on each element.  Used for side-effects (updating 
accumulator variables) or interacting with external systems.

Full list at http://spark.apache.org/docs/latest/api/python/pyspark.html#pyspark.RDD



Pair RDDs

• Key/Value organization is a simple, but often very efficient schema, as we mentioned 
in our NoSQL discussion.

• Spark provides special operations on RDDs that contain key/value pairs.  They are 
similar to the general ones that we have seen.

• On the language (Python, Scala, Java) side key/values are simply tuples. If you have an 
RDD whose elements happen to be tuples of two items, it is a Pair RDD and you can 
use the key/value operations that follow.



Pair RDD Transformations

Transformation Result

reduceByKey(func) Reduce values using func, but on a key by key basis.  That is, 
combine values with the same key.

groupByKey() Combine values with same key.  Each key ends up with a list.

sortByKey() Return an RDD sorted by key.

mapValues(func) Use func to change values, but not key.

keys() Return an RDD of only keys.

values() Return an RDD of only values.

Note that all of the regular transformations are available as well.



Two Pair RDD Transformations

Transformation Result

subtractByKey(otherRDD) Remove elements with a key present in other RDD.

join(otherRDD) Inner join: Return an RDD containing all pairs of elements with 
matching keys in self and other.  Each pair of elements will be 
returned as a (k, (v1, v2)) tuple, where (k, v1) is in self and (k, 
v2) is in other.

leftOuterJoin(otherRDD) For each element (k, v) in self, the resulting RDD will either 
contain all pairs (k, (v, w)) for w in other, or the pair (k, (v, 
None)) if no elements in other have key k.

rightOuterJoin(otherRDD) For each element (k, w) in other, the resulting RDD will either 
contain all pairs (k, (v, w)) for v in this, or the pair (k, (None, w)) 
if no elements in self have key k.

cogroup(otherRDD) Group data from both RDDs by key.

Full list at http://spark.apache.org/docs/latest/api/python/pyspark.html#pyspark.RDD



>>> x = sc.parallelize([("a", 1), ("b", 4)])

>>> y = sc.parallelize([("a", 2), ("a", 3)])

>>> z = x.join(y)

>>> z.collect()
[('a', (1, 2)), ('a', (1, 3))]

Simple Example

Who needs this? While the above isn't particularly motivating, we will shortly find 
ourselves in need of just this join operation. It pops up repeatedly in data manipulation 
whenever we want to combine data from two different sources which share keys (the 
first element).



Pair RDD Actions

Action Result

countByKey() Count the number of elements for each key.

lookup(key) Return all the values for this key.

Full list at http://spark.apache.org/docs/latest/api/python/pyspark.html#pyspark.RDD

As with transformations, all of the regular actions are available to Pair RDDs, and there 
are some additional ones that can take advantage of key/value structure.



Optimizations
We said one of the advantages of Spark is that we can control things for better 
performance. There are a multitude of optimization, performance, tuning and 
programmatic features to enable better control. We quickly look at a few of the most 
important.

• Persistence

• Partitioning

• Parallel Programming Capabilities

• Performance and Debugging Tools



Persistence
• Lazy evaluation implies by default that all the RDD dependencies will be computed when we call an action on that 

RDD.

• If we intend to use that data multiple times (say we are filtering some log, then dumping the results, but we will 
analyze it further) we can tell Spark to persist the data.

• We can specify different levels of persistence: MEMORY_ONLY, MEMORY_ONLY_SER, MEMORY_AND_DISK, 
MEMORY_AND_DISK_SER, DISK_ONLY

>>> lines_rdd = sc.textFile("nasa_19950801.tsv")
>>> stanfordLines_rdd = lines.filter(lambda line: "stanford" in line)
>>> stanfordLines_rdd.persist(StorageLevel.MEMORY_AND_DISK)
>>> stanfordLines_rdd.count()
47

>>> stanfordLines_rdd.first(1)
[u.glim.stanford.edu\t-\t807258394\tGET\t/shuttle/…/orbiters-logo.gif\t200\t1932\t\t']
.
.
.
>>> stanfordLines.unpersist()

Do before

first action.

Actions

Otherwise will just 

get evicted when 

out of memory 

(which is fine).



Partitions
• Spark distributes the data of your RDDs across its resources.  It tries to do some 

obvious things.

• With key/value pairs we can help keep that data grouped efficiently.

• We can create custom partitioners that beat the default (which is probably a hash or 
maybe range).

• Use persist() if you have partitioned your data in some smart way.  Otherwise it will 
keep getting re-partitioned.



Parallel Programming Features
Spark has several parallel programming features that make it easier and more efficient to do operations in parallel in a more explicit way.

Accumulators are variables that allow many copies of a variable to exist on the separate worker nodes. 

It is also possible to have replicated data that we would like all the workers to have access to.  Perhaps a lookup table of IP addresses to 
country codes so that each worker can transform or filter on such information.  Maybe we want to exclude all non-US IP entries in our logs.  
You might think of ways you could do this just by passing variables, but they would likely be expensive in actual operation (usually requiring 
multiple sends). The solution in Spark is to send an (immutable, read only) broadcast variable

Accumulators

log = sc.textFile(“logs”)
blanks = sc.accumlator(0)

def tokenizeLog(line)
global blanks      # write-only variable
if (line ==“”)

blanks += 1
return line.split(“ “)

entries = log.flatMap(tokenizeLog)
entries.saveAsTextFile(“parsedlogs.txt”)
print “Blank entries: %d” blanks.value

Broadcast Variables

log = sc.textFile(“log.txt”)

IPtable = sc.broadcast(loadIPTable())

def countryFilter(IPentry, IPtable)
return (IPentry.prefix() in IPTable)

USentries = log.filter(countryFilter)



Performance & Debugging

We will give unfortunately short shrift to performance and debugging, which are both 
important.  Mostly, this is because they are very configuration and application 
dependent.

Here are a few things to at least be aware of:

• SparkConf() class.  A lot of options can be tweaked here.

• Spark Web UI.  A very friendly way to explore all of these issues.



IO Formats
Spark has an impressive, and growing, list of input/output formats it supports.  Some 
important ones:

• Text
• CSV
• JSON
• Hadoop Interface

• Sequence files (key/value)
• Old and new Hadoop API
• Compression (gzip…)
• Database
• HBase
• MongoDB

• Protocol Buffers (Google thing)



Spark Streaming

Spark addresses the need for streaming processing of data with a API that divides the 
data into batches, which are then processed as RDDs.

There are features to enable:

• Fast recovery from failures or timeouts
• Load balancing
• Integration with static data and interactive queries
• Integration with other components (SQL, Machine Learning)

15% of the "global datasphere"  
(quantification of the amount of data 
created, captured, and replicated across 
the world) is currently real-time. That 
number is growing quickly both in 
absolute terms and as a percentage.



Shakespeare, a Data Analytics Favorite

Applying data analytics to the works of Shakespeare has become all the rage.  Whether determining the  legitimacy of 
his authorship (it wasn’t Marlowe) or if Othello is actually a comedy (perhaps), it is amazing how much publishable 
research has sprung from the recent analysis of 400 year old text.

We’re going to do some exercises here using a text file containing all of his works.



Who needs this Spark stuff?
As we do our first Spark exercises, you might think of several ways to accomplish these tasks that you already know. For example, Python 
Pandas is a fine way to do our following problem, and it will probably work on your laptop reasonably well.

However we are learning how to leverage scalable techniques that work on very big data. Shortly, we will encounter problems that are 
considerable in size, and you will leave this workshop knowing how to harness very large resources.

Searching the Complete Works of William Shakespeare for patterns is a lot different from searching the entire Web (perhaps as the 800TB 
Common Crawl dataset).

So everywhere you see an RDD, realize that it is a actually a parallel databank that could scale to PBs.



Some Simple Problems
We have an input file, Complete _Shakespeare.txt, that you can also find at http://www.gutenberg.org/ebooks/100.
You might find http://spark.apache.org/docs/latest/api/python/pyspark.html#pyspark.RDD useful to have in a browser window.

If you are starting from scratch on the login node:
1) interact     2) cd BigData/Shakespeare     3)module load intel      4) module load spark       5) pyspark
...

>>> rdd = sc.textFile("Complete_Shakespeare.txt")

Let’s try a few simple exercises.

1) Count the number of lines

2) Count the number of words (hint: Python "split" is a workhorse)

3) Count unique words

4) Count the occurrence of each word

5) Show the top 5 most frequent words

These last two are a bit more challenging. One approach is 
to think “key/value”. If you go that way, think about which 
data should be the key and don’t be afraid to swap it 
about with value. This is a very common manipulation 
when dealing with key/value organized data.

http://www.gutenberg.org/ebooks/100
http://spark.apache.org/docs/latest/api/python/pyspark.html#pyspark.RDD


>>> lines_rdd = sc.textFile("Complete_Shakespeare.txt")
>>>
>>> lines_rdd.count()
124787 
>>>
>>> words_rdd = lines_rdd.flatMap(lambda x: x.split())
>>> words_rdd.count()
904061
>>>
>>> words_rdd.distinct().count()
67779 
>>>

Some Simple Answers

Next, I know I'd like to end up with a pair RDD of sorted word/count pairs:

(23407, 'the'), (19540,'I'), (15682, 'to'), (15649, 'of') ...

Why not just words_rdd.countByValue()? We get back a massive Python unsorted 
dictionary of results:

... 1, u'precious-princely': 1, u'christenings?': 1, 'empire': 11, u'vaunts': 2, u"Lubber's": 1, 
u'poet.': 2, u'Toad!': 1, u'leaden': 15, u"captains'": 1, u'leaf': 9, u'Barnes,': 1, u'lead': 101, 
u"'Hell": 1, u'wheat,': 3, u'lean': 28, u'Toad,': 1, u'trencher!': 2, u'1.F.2.': 1, u'leas': 2, 

u'leap': 17, ...

Where to go next? Sort this in Python or try to get back into an RDD? If this is truly BIG
data, we want to remain as an RDD until we reach our final results.



>>> lines_rdd = sc.textFile("Complete_Shakespeare.txt")
>>>
>>> lines_rdd.count()
124787 
>>>
>>> words_rdd = lines_rdd.flatMap(lambda x: x.split())
>>> words_rdd.count()
904061
>>>
>>> words_rdd.distinct().count()
67779 
>>>
>>> key_value_rdd = words_rdd.map(lambda x: (x,1))
>>>
>>> key_value_rdd.take(5)
[(u'The', 1), (u'Project', 1), (u'Gutenberg', 1), (u'EBook', 1), (u'of', 1)]
>>>
>>> word_counts_rdd = key_value_rdd.reduceByKey(lambda x,y: x+y)
>>> word_counts_rdd.take(5)
[(u'fawn', 11), (u'considered-', 1), (u'Fame,', 3), (u'mustachio', 1), (u'protested,', 1)]
>>> 
>>> flipped_rdd = word_counts_rdd.map(lambda x: (x[1],x[0]))
>>> flipped_rdd.take(5)
[(11, u'fawn'), (1, u'considered-'), (3, u'Fame,'), (1, u'mustachio'), (1, u'protested,')]
>>> 
>>> results_rdd = flipped_rdd.sortByKey(False)
>>> results_rdd.take(5)
[(23407, u'the'), (19540, u'I'), (18358, u'and'), (15682, u'to'), (15649, u'of')]
>>> 

Some Harder Answers

Turn these into k/v pairs

Reduce to get words counts

Flip keys and values

so we can sort on

wordcount instead of

words.

results_rdd = lines_rdd.flatMap(lambda x: x.split()).map(lambda x: (x,1)).reduceByKey(lambda x,y: x+y).map(lambda x: (x[1],x[0])).sortByKey(False)

Things data
scientists do.



Some Homework Problems

To do research-level text analysis, we generally want to clean up our input. Here are some of the kinds of things you 
could do to get a more meaningful distinct word count.

1) Remove punctuation. Often punctuation is just noise, and it is here. Do a Map and/or Filter (some punctuation is 
attached to words, and some is not) to eliminate all punctuation from our Shakespeare data. Note that if you are 
familiar with regular expressions, Python has a ready method to use those.

2) Remove stop words. Stop words are common words that are also often uninteresting ("I", "the",  "a"). You can 
remove many obvious stop words with a list of your own, and the MLlib that we are about to investigate has a 
convenient StopWordsRemover() method with default lists for various languages.

3) Stemming. Recognizing that various different words share the same root ("run", "running") is important, but not so 
easy to do simply. Once again, Spark brings powerful libraries into the mix to help. A popular one is the Natural 
Language Tool Kit. You should look at the docs, but you can give it a quick test quite easily:

import nltk
from nltk.stem.porter import  *
stemmer = PorterStemmer()
stems_rdd = words_rdd.map( lambda x: stemmer.stem(x) )



MLib

MLib rolls in a lot of classic machine learning algorithms.  We barely have time to touch 
upon this interesting topic today, but they include:

• Useful data types
• Basic Statistics
• Classification (including SVMs, Random Forests)
• Regression
• Dimensionality Reduction (Princ. Comp. Anal., Sing. Val. Decomp.)
• Algorithms (SGD,…)
• Clustering…



Using MLlib

One of the reasons we use spark is for easy access to powerful data analysis tools.  The MLlib library 
gives us a machine learning library that is easy to use and utilizes the scalability of the Spark system.

It has supported APIs for Python (with NumPy), R, Java and Scala.

We will use the Python version in a generic manner that looks very similar to any of the above 
implementations.

There are good example documents for the clustering routine we are using here:

http://spark.apache.org/docs/latest/mllib-clustering.html

And an excellent API reference document here:

http://spark.apache.org/docs/latest/api/python/pyspark.mllib.html#pyspark.mllib.clustering.KMeans

I suggest you use these pages for all your Spark work.

http://spark.apache.org/docs/latest/mllib-clustering.html
http://spark.apache.org/docs/latest/api/python/pyspark.mllib.html#pyspark.mllib.clustering.KMeans


Clustering
Clustering is a very common operation for finding grouping in data and has countless applications. This is a very simple 
example, but you will find yourself reaching for a clustering algorithm frequently in pursuing many diverse machine 
learning objectives, sometimes as one part of a pipeline.

Weight

S
iz

e

Coin Sorting



Clustering
As intuitive as clustering is, it presents challenges to implement in an efficient and robust manner.

You might think this is trivial to implement in lower dimensional spaces.

But it can get tricky even there.

We will start with 5000 2D points.  We want to figure out how many clusters there are, and their centers.  Let’s fire up 
pyspark and get to it…

Sometimes you know how many clusters you have to start with. Often you don’t. 
How hard can it be to count clusters? How many are here?



____              __
/ __/__  ___ _____/ /__
_\ \/ _ \/ _ `/ __/  '_/
/__ / .__/\_,_/_/ /_/\_\ version 1.6.0

/_/

Using Python version 2.7.5 (default, Nov 20 2015 02:00:19)
SparkContext available as sc, HiveContext available as sqlContext.
>>>
>>> rdd1 = sc.textFile("5000_points.txt")
>>>
>>> rdd2 = rdd1.map(lambda x: x.split() )
>>> rdd3 = rdd2.map(lambda x: [int(x[0]),int(x[1])] )
>>>

Finding Clusters

Read into RDD

Transform to words and integers 

Let’s keep this around

*RDD map() takes a function to apply to the elements.  We can certainly create our own separate function, but lambdas are a way many languages 
allow us to define trivial functions “in place”.

br06% interact
...
r288% 
r288% module load spark
r288% pyspark



>>> rdd1 = sc.textFile("5000_points.txt")
>>> rdd1.count()
5000
>>> rdd1.take(4)
[u'    664159    550946', u'    665845    557965', u'    597173    575538', u'    618600    551446']
>>> rdd2 = rdd1.map(lambda x:x.split())
>>> rdd2.take(4)
[[u'664159', u'550946'], [u'665845', u'557965'], [u'597173', u'575538'], [u'618600', u'551446']]
>>> rdd3 = rdd2.map(lambda x: [int(x[0]),int(x[1])])
>>> rdd3.take(4)
[[664159, 550946], [665845, 557965], [597173, 575538], [618600, 551446]]
>>>

Finding Our Way



____              __
/ __/__  ___ _____/ /__
_\ \/ _ \/ _ `/ __/  '_/
/__ / .__/\_,_/_/ /_/\_\ version 1.6.0

/_/

Using Python version 2.7.5 (default, Nov 20 2015 02:00:19)
SparkContext available as sc, HiveContext available as sqlContext.
>>>
>>> rdd1 = sc.textFile("5000_points.txt")
>>>
>>> rdd2 = rdd1.map(lambda x:x.split())
>>> rdd3 = rdd2.map(lambda x: [int(x[0]),int(x[1])])
>>>
>>>
>>> from pyspark.mllib.clustering import KMeans

Finding Clusters

Read into RDD

Transform 

Import Kmeans



Finding Clusters



____              __
/ __/__  ___ _____/ /__
_\ \/ _ \/ _ `/ __/  '_/
/__ / .__/\_,_/_/ /_/\_\ version 1.6.0

/_/

Using Python version 2.7.5 (default, Nov 20 2015 02:00:19)
SparkContext available as sc, HiveContext available as sqlContext.
>>>
>>> rdd1 = sc.textFile("5000_points.txt")
>>>
>>> rdd2 = rdd1.map(lambda x:x.split())
>>> rdd3 = rdd2.map(lambda x: [int(x[0]),int(x[1])])
>>>
>>> from pyspark.mllib.clustering import KMeans
>>>
>>> for clusters in range(1,30):
... model = KMeans.train(rdd3, clusters)
... print clusters, model.computeCost(rdd3)
... 

Finding Clusters

Let’s see results for 1-30 cluster tries

1 5.76807041184e+14
2 3.43183673951e+14
3 2.23097486536e+14
4 1.64792608443e+14
5 1.19410028576e+14
6 7.97690150116e+13
7 7.16451594344e+13
8 4.81469246295e+13
9 4.23762700793e+13
10 3.65230706654e+13
11 3.16991867996e+13
12 2.94369408304e+13
13 2.04031903147e+13
14 1.37018893034e+13
15 8.91761561687e+12
16 1.31833652006e+13
17 1.39010717893e+13
18 8.22806178508e+12
19 8.22513516563e+12
20 7.79359299283e+12
21 7.79615059172e+12
22 7.70001662709e+12
23 7.24231610447e+12
24 7.21990743993e+12
25 7.09395133944e+12
26 6.92577789424e+12
27 6.53939015776e+12
28 6.57782690833e+12
29 6.37192522244e+12



>>> for trials in range(10):
... print
... for clusters in range(12,18):
... model = KMeans.train(rdd3,clusters)
... print clusters, model.computeCost(rdd3)

Right Answer?

12 2.45472346524e+13
13 2.00175423869e+13
14 1.90313863726e+13
15 1.52746006962e+13
16 8.67526114029e+12
17 8.49571894386e+12

12 2.62619056924e+13
13 2.90031673822e+13
14 1.52308079405e+13
15 8.91765957989e+12
16 8.70736515113e+12
17 8.49616440477e+12

12 2.5524719797e+13
13 2.14332949698e+13
14 2.11070395905e+13
15 1.47792736325e+13
16 1.85736955725e+13
17 8.42795740134e+12

12 2.31466242693e+13
13 2.10129797745e+13
14 1.45400177021e+13
15 1.52115329071e+13
16 1.41347332901e+13
17 1.31314086577e+13

12 2.47927778784e+13
13 2.43404436887e+13
14 2.1522702068e+13
15 8.91765000665e+12
16 1.4580927737e+13
17 8.57823507015e+12

12 2.31466520037e+13
13 1.91856542103e+13
14 1.49332023312e+13
15 1.3506302755e+13
16 8.7757678836e+12
17 1.60075548613e+13

12 2.5187054064e+13
13 1.83498739266e+13
14 1.96076943156e+13
15 1.41725666214e+13
16 1.41986217172e+13
17 8.46755159547e+12

12 2.38234539188e+13
13 1.85101922046e+13
14 1.91732620477e+13
15 8.91769396968e+12
16 8.64876051004e+12
17 8.54677681587e+12

12 2.5187054064e+13
13 2.04031903147e+13
14 1.95213876047e+13
15 1.93000628589e+13
16 2.07670831868e+13
17 8.47797102908e+12

12 2.39830397362e+13
13 2.00248378195e+13
14 1.34867337672e+13
15 2.09299321238e+13
16 1.32266735736e+13
17 8.50857884943e+12



>>> for trials in range(10):                          #Try ten times to find best result
... for clusters in range(12, 16):                 #Only look in interesting range
...        model = KMeans.train(rdd3, clusters)
... cost = model.computeCost(rdd3)
... centers = model.clusterCenters #Let’s grab cluster centers
... if cost<1e+13:                             #If result is good, print it out
... print clusters, cost
... for coords in centers:
... print int(coords[0]), int(coords[1])
... break
... 

Find the Centers

15 8.91761561687e+12
852058 157685
606574 574455
320602 161521
139395 558143
858947 546259
337264 562123
244654 847642
398870 404924
670929 862765
823421 731145
507818 175610
801616 321123
617926 399415
417799 787001
167856 347812
15 8.91765957989e+12
670929 862765
139395 558143
244654 847642
852058 157685
617601 399504
801616 321123
507818 175610
337264 562123
858947 546259
823421 731145
606574 574455
167856 347812
398555 404855
417799 787001
320602 161521



Fit?
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16 Clusters
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Curse of Dimensionality

This is a good time to point out how our intuition can lead us astray as we increase the dimensionality of our problems - which we will 
certainly be doing - and to a great degree. There are several related aspects to this phenomenon, often referred to as the Curse of 
Dimensionality. One root cause of confusion is that our notion of Euclidian distance starts to fail in higher dimensions.

These plots show the distributions of pairwise distances 
between randomly distributed points within differently 
dimensioned unit hypercubes. Notice how all the points start 
to be about the same distance apart.

Once can imagine this makes life harder on a clustering 
algorithm!

There are other surprising effects: random vectors are 
almost all orthogonal; the unit sphere takes almost no 
volume in the unit square. These cause all kinds of problems 
when generalizing algorithms from our lowly 3D world.



[urbanic@r005 Clustering]$ pyspark
Python 2.7.11 (default, Feb 23 2016, 17:47:07) 
[GCC 4.8.5 20150623 (Red Hat 4.8.5-4)] on linux2
Type "help", "copyright", "credits" or "license" for more information.Welcome to

____              __
/ __/__  ___ _____/ /__
_\ \/ _ \/ _ `/ __/  '_/
/__ / .__/\_,_/_/ /_/\_\ version 2.1.0

/_/

Using Python version 2.7.11 (default, Feb 23 2016 17:47:07)
SparkSession available as 'spark'.
>>>
>>>
>>> execfile("clustering.py")
1 5.76807041184e+14                                                             
2 3.73234816206e+14
3 2.13508993715e+14
4 1.38250712993e+14
5 1.2632806251e+14
6 7.97690150116e+13
7 7.14156965883e+13
8 5.7815194802e+13
...
...
...

Run My Programs Or Yours
execfile()

If you have another session window open on 
bridge’s login node, you can edit this file, save it 
while you remain in the editor, and then run it again 
in the python shell window with execfile().

You do not need this second session to be on a 
compute node. Do not start another interactive 
session.



A Few Words About DataFrames

As mentioned earlier, an appreciation for having some defined structure to your data has 
come back into vogue. For one, because it simply makes sense and naturally emerges in many 
applications. Often even more important, it can greatly aid optimization, especially with the 
Java VM that Spark uses.

For both of these reasons, you will see that the newest set of APIs to Spark are DataFrame
based. Sound leading-edge? This is simply SQL type columns. Very similar to Python pandas 
DataFrames (but based on RDDs, so not exactly).

We haven't prioritized them here because they aren't necessary, and some of the pieces 
aren't mature. But some of the latest features use them.



Creating DataFrames

It is very pretty intuitive to utilize DataFrames. Your elements just have labeled columns.

A row RDD is the basic way to go from RDD to DataFrame, and back, if necessary. A "row" is just a tuple.

>>> row_rdd = sc.parallelize([ ("Joe","Pine St.","PA",12543), ("Sally","Fir Dr.","WA",78456),
("Jose","Elm Pl.","ND",45698) ])

>>>
>>> aDataFrameFromRDD = spark.createDataFrame( row_rdd, ["name", "street", "state", "zip"] )
>>> aDataFrameFromRDD.show()
+-----+--------+-----+-----+
| name|  street|state|  zip|
+-----+--------+-----+-----+
|  Joe|Pine St.|   PA|12543|
|Sally| Fir Dr.|   WA|78456|
| Jose| Elm Pl.|   ND|45698|
+-----+--------+-----+-----+



Creating DataFrames

You will come across DataFrames created without a schema. They get default column names.

>>> noSchemaDataFrame = spark.createDataFrame( row_rdd )
>>> noSchemaDataFrame.show()
+-----+--------+---+-----+
|   _1|      _2| _3|   _4|
+-----+--------+---+-----+
|  Joe|Pine St.| PA|12543|
|Sally| Fir Dr.| WA|78456|
| Jose| Elm Pl.| ND|45698|
+-----+--------+---+-----+

And you can create them inline as well.

>>> directDataFrame = spark.createDataFrame([ ("Joe","Pine St.","PA",12543), ("Sally","Fir Dr.","WA",78456),
("Jose","Elm Pl.","ND",45698) ],

["name", "street", "state", "zip"] )

Datasets
Spark has added a variation (technically a superset) 
of DataFrames called Datasets. For compiled 
languages with strong typing (Java and Scala) these 
provide static typing and can detect some errors at 
compile time.

This is not relevant to Python or R.



Speaking of pandas, or SciPy, or...

Some of you may have experience with the many Python libraries that accomplish some of 
these tasks. Immediately relevant to today, pandas allows us to sort and query data, and SciPy
provides some nice clustering algorithms. So why not just use them?

The answer is that Spark does these things in the context of having potentially huge, parallel 
resources at hand. We don't notice it as Spark is also convenient, but behind every Spark call:

• every RDD could be many TB in size

• every transform could use many thousands of cores and TB of memory

• every algorithm could also use those thousands of cores

So don't think of Spark as just a data analytics library because our exercises are modest. You 
are learning how to cope with Big Data.


