
John Urbanic
Parallel Computing Scientist

Pittsburgh Supercomputing Center

Copyright 2019

Deep Learning
In An Afternoon

How does all this fit together?

AI
ML

DL
nee Neural Nets

Big

Data

Character Recognition

Capchas

Chess

Go

Character Recognition

Capchas

Chess

Go

DL

Deep Learning / Neural Nets
Without question the biggest thing in ML and computer science right now. Is the hype
real? Can you learn anything meaningful in an afternoon? How did we get to this point?

The ideas have been around for decades. Two components came together in the past
decade to enable astounding progress:

• Widespread parallel computing (GPUs)

• Big data training sets

Two Perspectives
There are really two common ways to view the fundaments of deep learning.

• Inspired by biological models.

• An evolution of classic ML techniques (the perceptron).

They are both fair and useful. We’ll give each a thin slice of our attention before we move on
to the actual implementation. You can decide which perspective works for you.

Modeled After The Brain

As a Highly Dimensional Non-linear Classifier

Perceptron

No Hidden Layer

Linear

Network

Hidden Layers

Nonlinear

Courtesy: Chris Olah

In Practice

How many

inputs?

How deep?

How many

outputs?

For an image it

could be one

(or 3) per pixel.

Might be an

entire image.

100+ layers

have become

common.

Or could be

discreet set of

classification

possibilities.

Woman

House

Airplane

Cat

Basic NN Architecture

Input Layer Hidden Layer Output Layer

Synapse

Neuron

Activation Function
Neurons apply activation functions at these summed inputs. Activation functions

are typically non-linear.

• The Sigmoid function produces a value between 0 and 1, so it is intuitive

when a probability is desired, and was almost standard for many years.

• The Rectified Linear activation function is zero when the input is negative and

is equal to the input when the input is positive. Rectified Linear activation

functions are currently the most popular activation function as they are more

efficient than the sigmoid or hyperbolic tangent.

• Sparse activation: In a randomly initialized network, only 50% of

hidden units are active.

• Better gradient propagation: Fewer vanishing gradient problems

compared to sigmoidal activation functions that saturate in both

directions.

• Efficient computation: Only comparison, addition and multiplication.

• There are Leaky and Noisy variants.

Inference
The "forward" or thinking step

0.5

0.9

-0.3

H1

H2

H3

O1

O2

H1 Weights = (1.0, -2.0, 2.0)

H2 Weights = (2.0, 1.0, -4.0)

H3 Weights = (1.0, -1.0, 0.0)

O1 Weights = (-3.0, 1.0, -3.0)

O2 Weights = (0.0, 1.0, 2.0)

Inference

0.5

0.9

-0.3

.13

.96

.40

O1

O2

H1 Weights = (1.0, -2.0, 2.0)

H2 Weights = (2.0, 1.0, -4.0)

H3 Weights = (1.0, -1.0, 0.0)

O1 Weights = (-3.0, 1.0, -3.0)

O2 Weights = (0.0, 1.0, 2.0)

H1 = Sigmoid(0.5 * 1.0 + 0.9 * -2.0 + -0.3 * 2.0) = Sigmoid(-1.9) = .13

H2 = Sigmoid(0.5 * 2.0 + 0.9 * 1.0 + -0.3 * -4.0) = Sigmoid(3.1) = .96

H3 = Sigmoid(0.5 * 1.0 + 0.9 * -1.0 + -0.3 * 0.0) = Sigmoid(-0.4) = .40

Inference

0.5

0.9

-0.3

.13

.96

.40

.35

.85

H1 Weights = (1.0, -2.0, 2.0)

H2 Weights = (2.0, 1.0, -4.0)

H3 Weights = (1.0, -1.0, 0.0)

O1 Weights = (-3.0, 1.0, -3.0)

O2 Weights = (0.0, 1.0, 2.0)

O1 = Sigmoid(.13 * -3.0 + .96 * 1.0 + .40 * -3.0) = Sigmoid(-.63) = .35

O1 = Sigmoid(.13 * 0.0 + .96 * 1.0 + .40 * 2.0) = Sigmoid(1.76) = .85

As A Matrix Operation

H1 Weights = (1.0, -2.0, 2.0)

H2 Weights = (2.0, 1.0, -4.0)

H3 Weights = (1.0, -1.0, 0.0)

1.0 -2.0 2.0

2.0 1.0 -4.0

1.0 -1.0 0.0

0.5

0.9

-0.3

-1.9 3.1 -0.4) = Sig(*Sig() = .13 .96 0.4

Hidden Layer Weights Inputs

Hidden Layer Outputs

Now this looks like something that we can pump through a GPU.

Biases

1.0 -2.0 2.0

2.0 1.0 -4.0

1.0 -1.0 0.0

0.5

0.9

-0.3

-1.8 3.2 -0.3) = Sig(*Sig() = .14 .96 0.4

Hidden Layer Weights Inputs

Hidden Layer Outputs

It is also very useful to be able to offset our inputs by some constant. You can think of this as
centering the activation function, or translating the solution (next slide). We will call this
constant the bias, and it there will often be one value per layer.

Our math for the previously calculated layer now looks like this with b=0.1:

+

0.1

0.1

0.1

Linear + Nonlinear
The magic formula for a neural net is that, at each layer, we apply linear operations (which
look naturally like linear algebra matrix operations) and then pipe the final result through
some kind of final nonlinear activation function. The combination of the two allows us to do
very general transforms.

The matrix multiply provides the skew,
rotation and scale.

The bias provides the translation.

The activation function provides the
warp.

Linear + Nonlinear
These are two very simple networks untangling spirals. Note that the second does not
succeed. With more substantial networks these would both be trivial.

Courtesy: Chris Olah

Width of Network
A very underappreciated fact about networks is that the width of any layer determines how
many dimensions it can work in. This is valuable even for lower dimension problems. How
about trying to classify (separate) this dataset:

Can a neural net do this with twisting and deforming? What good does it do to have more
than two dimensions with a 2D dataset?

Courtesy: Chris Olah

Working In Higher Dimensions
It takes at least 3 units wide to pull this off, regardless of depth.

Greater depth allows us to stack these operations, and can be very effective. The gains from
depth are harder to characterize.

Trying Success Success in 3D

Courtesy: Chris Olah

Training Neural Networks

So how do we find these magic weights? We want to minimize the error on our training data.
Given labeled inputs, select weights that generate the smallest average error on the outputs.

We know that the output is a function of the weights: E(w1,w2,w3,...i1,...t1,...). So to figure out
which way, and how much, to push any particular weight, say w3, we want to calculate 𝜕𝐸

𝜕𝑤3

There are a lot of dependencies going on here. It isn't obvious
that there is a viable way to do this in very large networks.

0.5

0.9

-

0.3

.13

.96

.40

.35

.85

0.9

I

T

Ground

Truth

For Sigmoid

w O

If we take one small piece, it doesn't look so bad.

Note that the role of the gradient, , here means
that it becomes a problem if it vanishes. This is an
issue for very deep networks.

𝜕𝐸

𝜕𝑤3

Backpropagation

If we use the chain rule repeatedly across layers we can work our way backwards from the
output error through the weights, adjusting them as we go. Note that this is where the
requirement that activation functions must have nicely behaved derivatives comes from.

This technique makes the weight inter-dependencies much more tractable. An elegant
perspective on this can be found from Chris Olah at

http://colah.github.io/posts/2015-08-Backprop .

With basic calculus you can readily work through the details. You can find an excellent
explanation from the renowned 3Blue1Brown at

https://www.youtube.com/watch?v=Ilg3gGewQ5U .

You don't need to know the details, and this is all we have time to say, but you certainly can
understand this fully if your freshman calculus isn't too rusty and you have some spare time.

http://colah.github.io/posts/2015-08-Backprop
https://www.youtube.com/watch?v=Ilg3gGewQ5U

Solvers
However, even this efficient process leaves us with potentially many millions of simultaneous equations to solve (real
nets have a lot of weights). They are non-linear to boot. Fortunately, this isn't a new problem created by deep learning,
so we have options from the world of numerical methods.

The standard has been gradient descent. Methods, often
similar, have arisen that perform better for deep learning
applications. TensorFlow will allow us to use these
interchangeably - and we will.

Most interesting recent methods incorporate momentum to
help get over a local minimum. Momentum and step size are
the two hyperparameters we will encounter later.

Nevertheless, we don't expect to ever find the actual global
minimum.

We could/should find the error for all the training data before updating the weights (an epoch). However it is usually
much more efficient to use a stochastic approach, sampling a random subset of the data, updating the weights, and
then repeating with another mini-batch.

Wikipedia Commons

MNIST
We now know enough to attempt a problem. Only because the TensorFlow framework fills in
a lot of the details that we have glossed over. That is one of its functions.

Our problem will be character recognition. We will learn to read handwritten digits by training
on a large set of 28x28 greyscale samples.

First we’ll do this with the simplest possible model just to show how the TensorFlow
framework functions. Then we will implement a quite sophisticated and accurate
convolutional neural network for this same problem.

MNIST Data
Specifically we will have a file with 55,000 of these numbers.

The labels will be “one-hot
vectors”, which means a 1 in
the numbered slot:

6 = [0,0,0,0,0,0,1,0,0,0]

TensorFlow Startup
Make sure you are on a GPU node:

br006% interact -gpu
gpu42%

These examples assume you have the MNIST data sitting around in your current directory. You can get it on Bridges from
~training/BigData/MNIST: cp ~/training/BigData/MNIST/* .

gpu42% ls
-rw-r--r-- 1 urbanic pscstaff 1648877 May 4 02:13 t10k-images-idx3-ubyte.gz
-rw-r--r-- 1 urbanic pscstaff 4542 May 4 02:13 t10k-labels-idx1-ubyte.gz
-rw-r--r-- 1 urbanic pscstaff 9912422 May 4 02:13 train-images-idx3-ubyte.gz
-rw-r--r-- 1 urbanic pscstaff 28881 May 4 02:13 train-labels-idx1-ubyte.gz

To start TensorFlow, first, make sure the intel modules are loaded if they are not already:

gpu42% module load intel

Then load the TF module and start the python shell:

gpu42% module load tensorflow/1.5_gpu
gpu42% python

Two Other Ways To Play Along

Run the python programs from the command line:

gpu42% python CNN.py

Invoke them from within the python shell:

>>> execfile('CNN.py')

$ python
Python 3.6.1 |Continuum Analytics, Inc.| (default, Mar 22 2017, 19:54:23)
[GCC 4.4.7 20120313 (Red Hat 4.4.7-1)] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>>
>>> from tensorflow.examples.tutorials.mnist import input_data
>>> import tensorflow as tf
>>> mnist = input_data.read_data_sets(".", one_hot=True)
>>>
...
.....You may get some congratulatory noise here...
...........Pay it no heed................

MNIST With Regression

Only “mystery” code in whole workshop!

Just reads in files as we just discussed, in
batches. Easy to do but a slight digression.

>>>>>> x , y = mnist.train.next_batch(2)
>>> y[0]
array([0., 0., 0., 0., 1., 0., 0., 0., 0., 0.])
>>> x[0]
array([0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0.02352941, 0.76470596,
0.99607849, 1. , 0.93725497, 0.1137255 , 0. ,
0. , 0. , 0. , 0. , 0. ,
...
...
...

The API is well
documented.

That is terribly
unusual.

$ python
Python 3.6.1 |Continuum Analytics, Inc.| (default, Mar 22 2017, 19:54:23)
[GCC 4.4.7 20120313 (Red Hat 4.4.7-1)] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>>
>>> from tensorflow.examples.tutorials.mnist import input_data
>>> import tensorflow as tf
>>> mnist = input_data.read_data_sets(".", one_hot=True)
>>>
>>> x = tf.placeholder(tf.float32, [None, 784])
>>> W = tf.Variable(tf.zeros([784, 10]))
>>> b = tf.Variable(tf.zeros([10]))
>>> y = tf.matmul(x, W) + b
>>>
>>> y_ = tf.placeholder(tf.float32, [None, 10])
>>>

Regression MNIST

Placeholder
We will use TF placeholders for inputs and
outputs. We will use TF Variables for
persistent data that we can calculate.
NONE means this dimension can be any length.

Image is 784 vector
We have flattened our 28x28 image to a 1-D
784 vector. You will encounter this
simplification frequently.

b (Bias)
A bias is often added across all inputs to
eliminate some independent “background”.

>>> from tensorflow.examples.tutorials.mnist import input_data
>>> import tensorflow as tf
>>> mnist = input_data.read_data_sets(".", one_hot=True)
>>>
>>> x = tf.placeholder(tf.float32, [None, 784])
>>> W = tf.Variable(tf.zeros([784, 10]))
>>> b = tf.Variable(tf.zeros([10]))
>>> y = tf.matmul(x, W) + b
>>>
>>> y_ = tf.placeholder(tf.float32, [None, 10])
>>>
>>> cross_entropy = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits_v2(labels=y_, logits=y))
>>> train_step = tf.train.GradientDescentOptimizer(0.5).minimize(cross_entropy)
>>>
>>> sess = tf.InteractiveSession()
>>> tf.global_variables_initializer().run()
>>>
>>> for _ in range(1000):
>>> batch_xs, batch_ys = mnist.train.next_batch(100)
>>> sess.run(train_step, feed_dict={x: batch_xs, y_: batch_ys})
>>>
>>> correct_prediction = tf.equal(tf.argmax(y, 1), tf.argmax(y_, 1))
>>> accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
>>> print(sess.run(accuracy, feed_dict={x: mnist.test.images, y_: mnist.test.labels}))

Softmax Cross Entropy Loss

GD Solver
Here we define the solver and details
like step size to minimize our error.

The values coming out of our matrix operations can have large, and negative values. We would like
our solution vector to be conventional probabilities that sum to 1.0. An effective way to normalize
our outputs is to use the popular Softmax function. Let's look at an example with just three
possible digits:

Digit Output Exponential Normalized

0 4.8 121 .87
1 -2.6 0.07 .00
2 2.9 18 .13

Given the sensible way we have constructed these outputs, the Cross Entropy Loss function is a good
way to define the error across all possibilities. Better than squared error, which we have been
using until now. It is defined as - y_ log y, or if this really is a 0, y_=(1,0,0), and

-1log(0.87) - 0log(0.0001) - 0log(0.13) = -log(0.87) = -0.13

>>> from tensorflow.examples.tutorials.mnist import input_data
>>> import tensorflow as tf
>>> mnist = input_data.read_data_sets(".", one_hot=True)
>>>
>>> x = tf.placeholder(tf.float32, [None, 784])
>>> W = tf.Variable(tf.zeros([784, 10]))
>>> b = tf.Variable(tf.zeros([10]))
>>> y = tf.matmul(x, W) + b
>>>
>>> y_ = tf.placeholder(tf.float32, [None, 10])
>>>
>>> cross_entropy = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits_v2(labels=y_, logits=y))
>>> train_step = tf.train.GradientDescentOptimizer(0.5).minimize(cross_entropy)
>>>
>>> sess = tf.InteractiveSession()
>>> tf.global_variables_initializer().run()
>>>
>>> for _ in range(1000):
>>> batch_xs, batch_ys = mnist.train.next_batch(100)
>>> sess.run(train_step, feed_dict={x: batch_xs, y_: batch_ys})
>>>
>>> correct_prediction = tf.equal(tf.argmax(y, 1), tf.argmax(y_, 1))
>>> accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
>>> print(sess.run(accuracy, feed_dict={x: mnist.test.images, y_: mnist.test.labels}))

Training Regression MNIST

Launch
Launch the model and initialize
the variables.

Train
Do 1000 iterations with batches
of 100 images,labels instead of
whole dataset. This is
stochastic.

>>> from tensorflow.examples.tutorials.mnist import input_data
>>> import tensorflow as tf
>>> mnist = input_data.read_data_sets(".", one_hot=True)
>>>
>>> x = tf.placeholder(tf.float32, [None, 784])
>>> W = tf.Variable(tf.zeros([784, 10]))
>>> b = tf.Variable(tf.zeros([10]))
>>> y = tf.matmul(x, W) + b
>>>
>>> y_ = tf.placeholder(tf.float32, [None, 10])
>>>
>>> cross_entropy = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits_v2(labels=y_, logits=y))
>>> train_step = tf.train.GradientDescentOptimizer(0.5).minimize(cross_entropy)
>>>
>>> sess = tf.InteractiveSession()
>>> tf.global_variables_initializer().run()
>>>
>>> for _ in range(1000):
>>> batch_xs, batch_ys = mnist.train.next_batch(100)
>>> sess.run(train_step, feed_dict={x: batch_xs, y_: batch_ys})
>>>
>>> correct_prediction = tf.equal(tf.argmax(y, 1), tf.argmax(y_, 1))
>>> accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
>>> print(sess.run(accuracy, feed_dict={x: mnist.test.images, y_: mnist.test.labels}))
0.9183

Testing Regression MNIST

Results

• Argmax selects index of highest value. We end up with a list of booleans showing
matches.

• Reduce that list of 0s,1s and take the mean.
• Run the graph on the test dataset to determine accuracy. No solving involved.

Result is 92%.

92%
You may be impressed. This is a linear matrix that knows how to read numbers by multiplying an image
vector! Or not. Consider this the most basic walkthrough of constructing a graph with TensorFlow.

We can do much better using a real NN. We will even jump quite close to the state-of-the-art and use a
Convolutional Neural Net.

This will have a multi-layer structure like the deep networks we considered earlier.

It will also take advantage of the actual 2D structure of the image that we ditched so cavalierly earlier.

It will include dropout! A surprising optimization to many.

Convolutional Net

Convolution

Convolution
Boundary and Index Accounting!

Straight Convolution

+ =

Edge Detector

Images: Wikipedia

Simplest Convolution Net

Courtesy: Chris Olah

Stacking Convolutions

Courtesy: Chris Olah

C

o

n

v

o

l

u

t

i

o

n

From the very nice
Stanford CS231n

course at
http://cs231n.gith
ub.io/convolution

al-networks/

Stride = 2

http://cs231n.github.io/convolutional-networks/

Convolution Math

Each Convolutional Layer:

Inputs a volume of size WI×HI×DI (D is depth)

Requires four hyperparameters:

Number of filters K

their spatial extent N

the stride S

the amount of padding P

Produces a volume of size WO×HO×DO

WO = (WI − N + 2P) / S+1

HO = (HI −F +2P) / S+1

DO = K

This requires N⋅N⋅DI weights per filter, for a total of N⋅N⋅DI⋅K weights and K biases

In the output volume, the d-th depth slice (of size WO × HO) is the result of performing a convolution of the d-

th filter over the input volume with a stride of S, and then offset by d-th bias.

Pooling

Courtesy: Chris Olah

A Sophisticated Example

Among the several novel techniques combined in this work (such
as aggressive use of ReLU), they used dual GPUs, with different
flows for each, communicating only at certain layers. A result is
that the bottom GPU consistently specialized on color
information, and the top did not.

These are the 96 first layer 11x11 (x3, RGB, stacked here) filters from Krizehvsky et
al. (2012), a landmark advance in ImageNet classification called AlexNet.

from tensorflow.examples.tutorials.mnist import input_data

import tensorflow as tf

mnist = input_data.read_data_sets(".", one_hot=True)

x = tf.placeholder(tf.float32, [None, 784])
y_ = tf.placeholder(tf.float32, [None, 10])

x_image = tf.reshape(x, [-1,28,28,1])

W_conv1 = tf.Variable(tf.truncated_normal([5, 5, 1, 32], stddev=0.1))
b_conv1 = tf.Variable(tf.constant(0.1,shape=[32]))
h_conv1 = tf.nn.relu(tf.nn.conv2d(x_image, W_conv1,strides=[1, 1, 1, 1], padding='SAME') + b_conv1)
h_pool1 = tf.nn.max_pool(h_conv1, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')

W_conv2 = tf.Variable(tf.truncated_normal([5, 5, 32, 64], stddev=0.1))
b_conv2 = tf.Variable(tf.constant(0.1,shape=[64]))
h_conv2 = tf.nn.relu(tf.nn.conv2d(h_pool1, W_conv2,strides=[1, 1, 1, 1], padding='SAME') + b_conv2)
h_pool2 = tf.nn.max_pool(h_conv2, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')

W_fc1 = tf.Variable(tf.truncated_normal([7 * 7 * 64, 1024], stddev=0.1))
b_fc1 = tf.Variable(tf.constant(0.1,shape=[1024]))
h_pool2_flat = tf.reshape(h_pool2, [-1, 7*7*64])
h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1)

W_fc2 = tf.Variable(tf.truncated_normal([1024, 10], stddev=0.1))
b_fc2 = tf.Variable(tf.constant(0.1,shape=[10]))
keep_prob = tf.placeholder(tf.float32)
h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob)
y_conv = tf.matmul(h_fc1_drop, W_fc2) + b_fc2

cross_entropy = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits_v2(labels=y_, logits=y_conv))
train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy)
correct_prediction = tf.equal(tf.argmax(y_conv,1), tf.argmax(y_,1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))

sess = tf.InteractiveSession()

sess.run(tf.global_variables_initializer())
for i in range(20000):
batch = mnist.train.next_batch(50)
if i%100 == 0:
train_accuracy = accuracy.eval(feed_dict={x:batch[0], y_: batch[1], keep_prob: 1.0})
print("step %d, training accuracy %g"%(i, train_accuracy))

train_step.run(feed_dict={x: batch[0], y_: batch[1], keep_prob: 0.5})

print("test accuracy %g"%accuracy.eval(feed_dict={ x: mnist.test.images, y_: mnist.test.labels, keep_prob: 1.0}))

Convolutional MNIST
Complete Code

>>> from tensorflow.examples.tutorials.mnist import input_data
>>>
>>> import tensorflow as tf
>>>
>>> mnist = input_data.read_data_sets(".", one_hot=True)
>>>
>>> x = tf.placeholder(tf.float32, [None, 784])
>>> y_ = tf.placeholder(tf.float32, [None, 10])
>>>
>>> x_image = tf.reshape(x, [-1,28,28,1])
>>>

Convolutional MNIST
Loading 2D Images

[batch, height, width, channels]
-1 is TF for “unknown”

>>> from tensorflow.examples.tutorials.mnist import input_data
>>>
>>> import tensorflow as tf
>>>
>>> mnist = input_data.read_data_sets(".", one_hot=True)
>>>
>>> x = tf.placeholder(tf.float32, [None, 784])
>>> y_ = tf.placeholder(tf.float32, [None, 10])
>>>
>>> x_image = tf.reshape(x, [-1,28,28,1])
>>>
>>> W_conv1 = tf.Variable(tf.truncated_normal([5, 5, 1, 32], stddev=0.1))
>>> b_conv1 = tf.Variable(tf.constant(0.1,shape=[32]))
>>> h_conv1 = tf.nn.relu(tf.nn.conv2d(x_image, W_conv1,strides=[1, 1, 1, 1], padding='SAME') + b_conv1)
>>> h_pool1 = tf.nn.max_pool(h_conv1, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')
>>>

Convolutional MNIST
The First Layer

>>> from tensorflow.examples.tutorials.mnist import input_data
>>>
>>> import tensorflow as tf
>>>
>>> mnist = input_data.read_data_sets(".", one_hot=True)
>>>
>>> x = tf.placeholder(tf.float32, [None, 784])
>>> y_ = tf.placeholder(tf.float32, [None, 10])
>>>
>>> x_image = tf.reshape(x, [-1,28,28,1])
>>>

>>> W_conv1 = tf.Variable(tf.truncated_normal([5, 5, 1, 32], stddev=0.1))
>>> b_conv1 = tf.Variable(tf.constant(0.1,shape=[32]))

Convolutional MNIST
The First Layer

We will have 32 5x5 filers in this layer
What values to initialize?

Small random positive for weights
Small constant for bias

>>> from tensorflow.examples.tutorials.mnist import input_data
>>>
>>> import tensorflow as tf
>>>
>>> mnist = input_data.read_data_sets(".", one_hot=True)
>>>
>>> x = tf.placeholder(tf.float32, [None, 784])
>>> y_ = tf.placeholder(tf.float32, [None, 10])
>>>
>>> x_image = tf.reshape(x, [-1,28,28,1])
>>>
>>> W_conv1 = tf.Variable(tf.truncated_normal([5, 5, 1, 32], stddev=0.1))
>>> b_conv1 = tf.Variable(tf.constant(0.1,shape=[32]))

>>> h_conv1 = tf.nn.relu(tf.nn.conv2d(x_image, W_conv1, strides=[1, 1, 1, 1], padding='SAME') + b_conv1)

Convolutional MNIST
The First Layer

TF will handle padding
More explicit in cuDNN and Caffe

Stride of 1x1
Must be same dims as X (just set depth,batch=1)

>>> from tensorflow.examples.tutorials.mnist import input_data
>>>
>>> import tensorflow as tf
>>>
>>> mnist = input_data.read_data_sets(".", one_hot=True)
>>>
>>> x = tf.placeholder(tf.float32, [None, 784])
>>> y_ = tf.placeholder(tf.float32, [None, 10])
>>>
>>> x_image = tf.reshape(x, [-1,28,28,1])
>>>
>>> W_conv1 = tf.Variable(tf.truncated_normal([5, 5, 1, 32], stddev=0.1))
>>> b_conv1 = tf.Variable(tf.constant(0.1,shape=[32]))

>>> h_conv1 = tf.nn.relu(tf.nn.conv2d(x_image, W_conv1, strides=[1, 1, 1, 1], padding='SAME') + b_conv1)

Convolutional MNIST
The First Layer

Add bias and apply our ReLU

Widely adopted around 2010!

>>> from tensorflow.examples.tutorials.mnist import input_data
>>>
>>> import tensorflow as tf
>>>
>>> mnist = input_data.read_data_sets(".", one_hot=True)
>>>
>>> x = tf.placeholder(tf.float32, [None, 784])
>>> y_ = tf.placeholder(tf.float32, [None, 10])
>>>
>>> x_image = tf.reshape(x, [-1,28,28,1])
>>>
>>> W_conv1 = tf.Variable(tf.truncated_normal([5, 5, 1, 32], stddev=0.1))
>>> b_conv1 = tf.Variable(tf.constant(0.1,shape=[32]))
>>> h_conv1 = tf.nn.relu(tf.nn.conv2d(x_image, W_conv1,strides=[1, 1, 1, 1], padding='SAME') + b_conv1)

>>> h_pool1 = tf.nn.max_pool(h_conv1, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')

Convolutional MNIST
The First Layer

[batch, height, width, channels]
For window size and stride.

The image we will pass to the next layer is now 14x14.

>>> from tensorflow.examples.tutorials.mnist import input_data
>>>
>>> import tensorflow as tf
>>>
>>> mnist = input_data.read_data_sets(".", one_hot=True)
>>>
>>> x = tf.placeholder(tf.float32, [None, 784])
>>> y_ = tf.placeholder(tf.float32, [None, 10])
>>>
>>> x_image = tf.reshape(x, [-1,28,28,1])
>>>
>>> W_conv1 = tf.Variable(tf.truncated_normal([5, 5, 1, 32], stddev=0.1))
>>> b_conv1 = tf.Variable(tf.constant(0.1,shape=[32]))
>>> h_conv1 = tf.nn.relu(tf.nn.conv2d(x_image, W_conv1,strides=[1, 1, 1, 1], padding='SAME') + b_conv1)
>>> h_pool1 = tf.nn.max_pool(h_conv1, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')
>>>

Convolutional MNIST
The First Layer

>>> from tensorflow.examples.tutorials.mnist import input_data
>>>
>>> import tensorflow as tf
>>>
>>> mnist = input_data.read_data_sets(".", one_hot=True)
>>>
>>> x = tf.placeholder(tf.float32, [None, 784])
>>> y_ = tf.placeholder(tf.float32, [None, 10])
>>>
>>> x_image = tf.reshape(x, [-1,28,28,1])
>>>
>>> W_conv1 = tf.Variable(tf.truncated_normal([5, 5, 1, 32], stddev=0.1))
>>> b_conv1 = tf.Variable(tf.constant(0.1,shape=[32]))
>>> h_conv1 = tf.nn.relu(tf.nn.conv2d(x_image, W_conv1,strides=[1, 1, 1, 1], padding='SAME') + b_conv1)
>>> h_pool1 = tf.nn.max_pool(h_conv1, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')
>>>

>>> W_conv2 = tf.Variable(tf.truncated_normal([5, 5, 32, 64], stddev=0.1))
>>> b_conv2 = tf.Variable(tf.constant(0.1,shape=[64]))
>>> h_conv2 = tf.nn.relu(tf.nn.conv2d(h_pool1, W_conv2,strides=[1, 1, 1, 1], padding='SAME') + b_conv2)
>>> h_pool2 = tf.nn.max_pool(h_conv2, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')

Convolutional MNIST
Second Layer

Now we have 32 features coming in, and we will
use 64 on this layer.

The next layer will be getting a 7x7 image.

>>> from tensorflow.examples.tutorials.mnist import input_data
>>>
>>> import tensorflow as tf
>>>
>>> mnist = input_data.read_data_sets(".", one_hot=True)
>>>
>>> x = tf.placeholder(tf.float32, [None, 784])
>>> y_ = tf.placeholder(tf.float32, [None, 10])
>>>
>>> x_image = tf.reshape(x, [-1,28,28,1])
>>>
>>> W_conv1 = tf.Variable(tf.truncated_normal([5, 5, 1, 32], stddev=0.1))
>>> b_conv1 = tf.Variable(tf.constant(0.1,shape=[32]))
>>> h_conv1 = tf.nn.relu(tf.nn.conv2d(x_image, W_conv1,strides=[1, 1, 1, 1], padding='SAME') + b_conv1)
>>> h_pool1 = tf.nn.max_pool(h_conv1, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')
>>>
>>> W_conv2 = tf.Variable(tf.truncated_normal([5, 5, 32, 64], stddev=0.1))
>>> b_conv2 = tf.Variable(tf.constant(0.1,shape=[64]))
>>> h_conv2 = tf.nn.relu(tf.nn.conv2d(h_pool1, W_conv2,strides=[1, 1, 1, 1], padding='SAME') + b_conv2)
>>> h_pool2 = tf.nn.max_pool(h_conv2, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')
>>>

>>> W_fc1 = tf.Variable(tf.truncated_normal([7 * 7 * 64, 1024], stddev=0.1))
>>> b_fc1 = tf.Variable(tf.constant(0.1,shape=[1024]))
>>> h_pool2_flat = tf.reshape(h_pool2, [-1, 7*7*64])
>>> h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1)

Convolutional MNIST
Fully Connected Layer

Now we can just flatten our 64 7x7 images into
one big vector for the FC layer to analyze.

We will choose 1024 neurons for this layer.

Overfitting

One solution is to keep using

higher order terms, but to

penalize them. These

regularization hyperparameters

that enable our solution to have

good generalization will show

up again in our workshop, and

throughout your machine

learning endeavors.

Think of this as Occam's Razor

for machine learning.

>>> from tensorflow.examples.tutorials.mnist import input_data
>>>
>>> import tensorflow as tf
>>>
>>> mnist = input_data.read_data_sets(".", one_hot=True)
>>>
>>> x = tf.placeholder(tf.float32, [None, 784])
>>> y_ = tf.placeholder(tf.float32, [None, 10])
>>>
>>> x_image = tf.reshape(x, [-1,28,28,1])
>>>
>>> W_conv1 = tf.Variable(tf.truncated_normal([5, 5, 1, 32], stddev=0.1))
>>> b_conv1 = tf.Variable(tf.constant(0.1,shape=[32]))
>>> h_conv1 = tf.nn.relu(tf.nn.conv2d(x_image, W_conv1,strides=[1, 1, 1, 1], padding='SAME') + b_conv1)
>>> h_pool1 = tf.nn.max_pool(h_conv1, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')
>>>
>>> W_conv2 = tf.Variable(tf.truncated_normal([5, 5, 32, 64], stddev=0.1))
>>> b_conv2 = tf.Variable(tf.constant(0.1,shape=[64]))
>>> h_conv2 = tf.nn.relu(tf.nn.conv2d(h_pool1, W_conv2,strides=[1, 1, 1, 1], padding='SAME') + b_conv2)
>>> h_pool2 = tf.nn.max_pool(h_conv2, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')
>>>
>>> W_fc1 = tf.Variable(tf.truncated_normal([7 * 7 * 64, 1024], stddev=0.1))
>>> b_fc1 = tf.Variable(tf.constant(0.1,shape=[1024]))
>>> h_pool2_flat = tf.reshape(h_pool2, [-1, 7*7*64])
>>> h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1)
>>>

>>> W_fc2 = tf.Variable(tf.truncated_normal([1024, 10], stddev=0.1))
>>> b_fc2 = tf.Variable(tf.constant(0.1,shape=[10]))
>>> keep_prob = tf.placeholder(tf.float32)
>>> h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob)
>>> y_conv = tf.matmul(h_fc1_drop, W_fc2) + b_fc2

Convolutional MNIST
Dropout

We will have a final FC layer that gets us
from 1024 neurons down to our 10
possible outputs.

However now we will use a fairly new but
rapidly adopted, and surprisingly
effective, method of combatting
overfitting: we will simply drop some
proportion of connections randomly each
step (only during training).

This is called dropout. The TF routines
handle some scaling details for us as well.

>>> from tensorflow.examples.tutorials.mnist import input_data
>>>
>>> import tensorflow as tf
>>>
>>> mnist = input_data.read_data_sets(".", one_hot=True)
>>>
>>> x = tf.placeholder(tf.float32, [None, 784])
>>> y_ = tf.placeholder(tf.float32, [None, 10])
>>>
>>> x_image = tf.reshape(x, [-1,28,28,1])
>>>
>>> W_conv1 = tf.Variable(tf.truncated_normal([5, 5, 1, 32], stddev=0.1))
>>> b_conv1 = tf.Variable(tf.constant(0.1,shape=[32]))
>>> h_conv1 = tf.nn.relu(tf.nn.conv2d(x_image, W_conv1,strides=[1, 1, 1, 1], padding='SAME') + b_conv1)
>>> h_pool1 = tf.nn.max_pool(h_conv1, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')
>>>
>>> W_conv2 = tf.Variable(tf.truncated_normal([5, 5, 32, 64], stddev=0.1))
>>> b_conv2 = tf.Variable(tf.constant(0.1,shape=[64]))
>>> h_conv2 = tf.nn.relu(tf.nn.conv2d(h_pool1, W_conv2,strides=[1, 1, 1, 1], padding='SAME') + b_conv2)
>>> h_pool2 = tf.nn.max_pool(h_conv2, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')
>>>
>>> W_fc1 = tf.Variable(tf.truncated_normal([7 * 7 * 64, 1024], stddev=0.1))
>>> b_fc1 = tf.Variable(tf.constant(0.1,shape=[1024]))
>>> h_pool2_flat = tf.reshape(h_pool2, [-1, 7*7*64])
>>> h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1)
>>>
>>> W_fc2 = tf.Variable(tf.truncated_normal([1024, 10], stddev=0.1))
>>> b_fc2 = tf.Variable(tf.constant(0.1,shape=[10]))
>>> keep_prob = tf.placeholder(tf.float32)
>>> h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob)
>>> y_conv = tf.matmul(h_fc1_drop, W_fc2) + b_fc2
>>>

>>> cross_entropy = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits_v2(labels=y_, logits=y_conv))
>>> train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy)
>>> correct_prediction = tf.equal(tf.argmax(y_conv,1), tf.argmax(y_,1))
>>> accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))

Convolutional MNIST
Last Steps Before Training

Just like the regression model, we will
define error as cross entropy and count
our correct predictions.

However this time we will use a sophisticated newer (2015) optimizer called ADAM. It is
as simple as dropping it in.

>>> from tensorflow.examples.tutorials.mnist import input_data
>>>
>>> import tensorflow as tf
>>>
>>> mnist = input_data.read_data_sets(".", one_hot=True)
>>>
>>> x = tf.placeholder(tf.float32, [None, 784])
>>> y_ = tf.placeholder(tf.float32, [None, 10])
>>>
>>> x_image = tf.reshape(x, [-1,28,28,1])
>>>
>>> W_conv1 = tf.Variable(tf.truncated_normal([5, 5, 1, 32], stddev=0.1))
>>> b_conv1 = tf.Variable(tf.constant(0.1,shape=[32]))
>>> h_conv1 = tf.nn.relu(tf.nn.conv2d(x_image, W_conv1,strides=[1, 1, 1, 1], padding='SAME') + b_conv1)
>>> h_pool1 = tf.nn.max_pool(h_conv1, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')
>>>
>>> W_conv2 = tf.Variable(tf.truncated_normal([5, 5, 32, 64], stddev=0.1))
>>> b_conv2 = tf.Variable(tf.constant(0.1,shape=[64]))
>>> h_conv2 = tf.nn.relu(tf.nn.conv2d(h_pool1, W_conv2,strides=[1, 1, 1, 1], padding='SAME') + b_conv2)
>>> h_pool2 = tf.nn.max_pool(h_conv2, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')
>>>
>>> W_fc1 = tf.Variable(tf.truncated_normal([7 * 7 * 64, 1024], stddev=0.1))
>>> b_fc1 = tf.Variable(tf.constant(0.1,shape=[1024]))
>>> h_pool2_flat = tf.reshape(h_pool2, [-1, 7*7*64])
>>> h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1)
>>>
>>> W_fc2 = tf.Variable(tf.truncated_normal([1024, 10], stddev=0.1))
>>> b_fc2 = tf.Variable(tf.constant(0.1,shape=[10]))
>>> keep_prob = tf.placeholder(tf.float32)
>>> h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob)
>>> y_conv = tf.matmul(h_fc1_drop, W_fc2) + b_fc2
>>>
>>> cross_entropy = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits_v2(labels=y_, logits=y_conv))
>>> train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy)
>>> correct_prediction = tf.equal(tf.argmax(y_conv,1), tf.argmax(y_,1))
>>> accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
>>>
>>> sess = tf.InteractiveSession()
>>>
>>> sess.run(tf.global_variables_initializer())
>>> for i in range(20000):
>>> batch = mnist.train.next_batch(50)
>>> if i%100 == 0:
>>> train_accuracy = accuracy.eval(feed_dict={x:batch[0], y_: batch[1], keep_prob: 1.0})
>>> print("step %d, training accuracy %g"%(i, train_accuracy))
>>> train_step.run(feed_dict={x: batch[0], y_: batch[1], keep_prob: 0.5})
>>>
>>> print("test accuracy %g"%accuracy.eval(feed_dict={ x: mnist.test.images, y_: mnist.test.labels, keep_prob: 1.0}))
test accuracy 0.9915

Convolutional MNIST
Training

Train away for 20,000 steps in batches of
50. Notice how we turn the dropout off
when we periodically check our
accuracy.

>>> from tensorflow.examples.tutorials.mnist import input_data
>>>
>>> import tensorflow as tf
>>>
>>> mnist = input_data.read_data_sets(".", one_hot=True)
>>>
>>> x = tf.placeholder(tf.float32, [None, 784])
>>> y_ = tf.placeholder(tf.float32, [None, 10])
>>>
>>> x_image = tf.reshape(x, [-1,28,28,1])
>>>
>>> W_conv1 = tf.Variable(tf.truncated_normal([5, 5, 1, 32], stddev=0.1))
>>> b_conv1 = tf.Variable(tf.constant(0.1,shape=[32]))
>>> h_conv1 = tf.nn.relu(tf.nn.conv2d(x_image, W_conv1,strides=[1, 1, 1, 1], padding='SAME') + b_conv1)
>>> h_pool1 = tf.nn.max_pool(h_conv1, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')
>>>
>>> W_conv2 = tf.Variable(tf.truncated_normal([5, 5, 32, 64], stddev=0.1))
>>> b_conv2 = tf.Variable(tf.constant(0.1,shape=[64]))
>>> h_conv2 = tf.nn.relu(tf.nn.conv2d(h_pool1, W_conv2,strides=[1, 1, 1, 1], padding='SAME') + b_conv2)
>>> h_pool2 = tf.nn.max_pool(h_conv2, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')
>>>
>>> W_fc1 = tf.Variable(tf.truncated_normal([7 * 7 * 64, 1024], stddev=0.1))
>>> b_fc1 = tf.Variable(tf.constant(0.1,shape=[1024]))
>>> h_pool2_flat = tf.reshape(h_pool2, [-1, 7*7*64])
>>> h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1)
>>>
>>> W_fc2 = tf.Variable(tf.truncated_normal([1024, 10], stddev=0.1))
>>> b_fc2 = tf.Variable(tf.constant(0.1,shape=[10]))
>>> keep_prob = tf.placeholder(tf.float32)
>>> h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob)
>>> y_conv = tf.matmul(h_fc1_drop, W_fc2) + b_fc2
>>>
>>> cross_entropy = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits_v2(labels=y_, logits=y_conv))
>>> train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy)
>>> correct_prediction = tf.equal(tf.argmax(y_conv,1), tf.argmax(y_,1))
>>> accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
>>>
>>> sess = tf.InteractiveSession()
>>>
>>> sess.run(tf.global_variables_initializer())
>>> for i in range(20000):
>>> batch = mnist.train.next_batch(50)
>>> if i%100 == 0:
>>> train_accuracy = accuracy.eval(feed_dict={x:batch[0], y_: batch[1], keep_prob: 1.0})
>>> print("step %d, training accuracy %g"%(i, train_accuracy))
>>> train_step.run(feed_dict={x: batch[0], y_: batch[1], keep_prob: 0.5})
>>>
>>> print("test accuracy %g"%accuracy.eval(feed_dict={ x: mnist.test.images, y_: mnist.test.labels, keep_prob: 1.0}))
test accuracy 0.9915

Convolutional MNIST
Testing

We finally test against a whole difference
set of test data (that is what mnist.test
returns) and find that we are:

99.15% Accurate!

Real Time Demo

This amazing, stunning, beautiful demo from Adam Harley (now just across campus) is very similar to
what we just did, but different enough to be interesting.

http://scs.ryerson.ca/~aharley/vis/conv/flat.html

It is worth experiment with. Note that this is an excellent demonstration of how efficient the forward
network is. You are getting very real-time analysis from a lightweight web program. Training it took
some time.

http://scs.ryerson.ca/~aharley/vis/conv/flat.html

Inference is Fast

Perceptual Labs

iPhone Demo

Style vs. Content
Deep Dream Generator

https://deepdreamgenerator.com/feed

TensorBoard
There is a tool that allows us visualize our graph, data and performance more easily. It does require some
instrumentation, but you may find it worthwhile.

Our CNN graph.

The time-varying behavior of our first convolutional filter.

Alternative Tools

There are a number of other tools to help you get a handle on your network performance. Perhaps the lightest weight
method is to enable graph tracing.

from tensorflow.python.client import timeline

options = tf.RunOptions(trace_level=tf.RunOptions.FULL_TRACE)
run_metadata = tf.RunMetadata()
sess.run(res, options=options, run_metadata=run_metadata)
.
.
fetched_timeline = timeline.Timeline(run_metadata.step_stats)
chrome_trace = fetched_timeline.generate_chrome_trace_format()
with open('timeline_01.json', 'w') as tracefile:

tracefile.write(chrome_trace)

from tensorflow.python import debug as tf_debug

sess = tf_debug.LocalCLIDebugWrapperSession(sess)

In a Chrome browser, go to chrome://tracing. In the upper left corner, you will find Load button. Press it and load your
JSON file.

A lightweight debugger is tfdbg. To add support in our example, we simply wrap the Session object with a debugger
wrapper. You can activate the tfdbg CLI with the --debug flag at the command line.

Optimization
The tools may give you some idea of where opportunities for improvement lie. There are many ways to speed up
training, and the list of techniques and APIs is constantly growing. Here are a few commonly applicable techniques.

Input
The feed_dicts that we use are slow - they are actual Python. We should instead use the TensorFlow Dataset API
(tf.data). This allows pipelining, aggregating from multiple files, and pre-processing. It will also offload much of this
work to the CPU. Note that older versions of code may use the deprecated Queue API.

Training
There are many training optimization methods, and most of them are somewhat architecture or dataset dependent.
There are some that have fairly general applicability, and which have become widely adopted. One is batch
normalization.

I mentioned that normalizing an input dataset (say color balance on images) can make life easier on the network. If
you think about how this helps the input layer, you might ask why we don't apply this to deeper layers. Indeed we can.
The general idea is to prevent any activation from going very high or low, and the general technique is to track and
apply a mean and standard deviation adjustment at each layer (keep the mean activation close to 0 and the activation
standard deviation close to 1). It can be as simple as applying tf.layers.batch_normalization() to each layer's output
(before the activation).

Scaling Up
You may have the idea that deep learning has a voracious appetite for GPU cycles. That is absolutely the case, and the
leading edge of research is currently limited by available resources. Researchers routinely use many GPUs to train a
model. Conversely, the largest resources demand that you use them in a parallel fashion.

Of course there are capabilities built into TensorFlow (and other frameworks) to enable this. For TensorFlow there is a
build in Distributed TensorFlow API. It can be a little tricky, and currently has bottlenecks at very large scale.

An alternative that is both lighter-weight (in terms of code modifications) and has demonstrated very good
performance on tens of thousands of GPUs is Horovod.

Not a lot of additional code

Pin GPU to be used to process local rank (one GPU per process)
config = tf.ConfigProto()
config.gpu_options.visible_device_list = str(hvd.local_rank())

Build model…
loss = …
opt = tf.train.AdagradOptimizer(0.01)

Add Horovod Distributed Optimizer
opt = hvd.DistributedOptimizer(opt)

Add hook to broadcast variables from rank 0 to all other processes during initialization.
hooks = [hvd.BroadcastGlobalVariablesHook(0)]

Make training operation
train_op = opt.minimize(loss)

The MonitoredTrainingSession takes care of session initialization, restoring, etc. with
tf.train.MonitoredTrainingSession(checkpoint_dir=“/tmp/train_logs”, config=config,

hooks=hooks) as mon_sess:
while not mon_sess.should_stop():
Perform synchronous training.
mon_sess.run(train_op)Horovod: fast and easy distributed deep learning in TensorFlow

Alexander Sergeev, Mike Del Balso

Scaling Up All the Way

Horovod demonstrates its excellent scalability with a Climate Analytics code that won the Gordon Bell prize in 2018. It
predicts Tropical Cyclones and Atmospheric River events based upon climate models. It shows not only the reach of
deep learning in the sciences, but the scale at which networks can be trained.

Exascale Deep Learning for Climate Analytics

Kurth, et. al.

• 1.13 ExaFlops (mixed precision) peak training performance

• On 4560 6 GPU nodes (27,360 GPUs total)

• High-accuracy (harder when predicting "no hurricane today" is
98% accurate), solved with weighted loss function.

• Layers each have different learning rate

Other Tasks and Their Architectures

So far we have focused on images, and their classification. You know that deep learning has had success across a wide,
and rapidly expanding, number of domains. Even our digit recognition task could be more sophisticated:

• Classification (What we did)
• Localization (Where is the digit?)
• Detection (Are there digits? How many?)
• Segmentation (Which pixels are the digits?)

These tasks would call for different network designs. This is where our Day 3 would begin.

Alas, we don't have a Day 3, but we can introduce you to the building blocks that enable these networks as well as
those used for so many other applications.

Building Blocks

So far, we have used Fully Connected and Convolutional layers. These are ubiquitous, but there are many others:

• Fully Connected (FC)
• Convolutional (CNN)
• Residual (ResNet) [Feed forward]
• Recurrent (RNN), [Feedback, but has vanishing gradients so...]
• Long Short Term Memory (LSTM)
• Bidirectional RNN
• Restricted Boltzmann Machine
•

•

Two of these are particularly common...

Wikipedia Commons

Very Effective Layers

Recurrent Neural Net
Wouldn't feedback help us with problems with context?

Courtesy: Chris Olah

Residual Neural Net (ResNet)
• Helps preserve reasonable gradients for very

deep networks
• Very effective at imagery
• Used by AlphaGo Zero (40 residual CNN layers)

in place of previous complex dual network
• 100s of layers common, Pushing 1000

Wikipedia Commons

But the gradients get very small for longer memory.

Long Short Term Memory (LSTM)
• Has an actual memory cell
• And a "forget" input
• Many variants*
• *LSTM: A Search Space Odyssey (Greff, et. al.)
• Winning all the competitions.

Architectures

AlexNet

With these layers, we can build countless different networks (and use TensorFlow to define them). Again, this is "3rd

day" material, but we present them here and you should feel competent to research them yourself.

Wikipedia Commons

GoogLeNet / Inception

Generative Adversarial Network
(GAN)

YOLO (You Only Look Once)

Mask R-CNN

Images from original papers

Learning Approaches

Supervised Learning
How you learned colors.
What we have been doing just now.
Used for: image recognition, tumor identification, segmentation.
Requires labeled data.
Lots of it. Augmenting helps.

Reinforcement Learning
How you learned to walk.
Requires goals (maybe long term, i.e. arbitrary delays between action and reward).
Used for: Go (AlphaGo Zero), robot motion, video games.

Unsupervised Learning
(Maybe) how you learned to see.
What we did earlier with clustering and our recommender.
Find patterns in data, compress data into model, find reducible representation of data.
Used for: Learning from unlabeled data.

All of these have been done with and without deep learning. DL has moved to the forefront of all of these.

“Theoretician’s Nightmare”

That is paraphrasing Yann LeCun, the godfather of Deep Learning.

If it feels like this is an oddly empirical branch of computer science, you are spot on.

Many of these techniques were developed through experimentation, and many of them are not amenable to classical
analysis. A theoretician would suggest that non-convex loss functions are at the heart of the matter, and that
situation isn’t getting better as many of the latest techniques have made this much worse.

You may also have noticed that many of the techniques we have used today have very recent provenance. This is true
throughout the field. Rarely is the undergraduate researcher so reliant upon results groundbreaking papers of a few
years ago.

My own humble observation: Deep Learning looks a lot like late 19th century chemistry. There is a weak theoretical
basis, but significant experimental breakthroughs of great utility. The lesson from that era was "expect a lot more
perspiration than inspiration."

You now have a Toolbox

The reason that we have attempted this ridiculously ambitious workshop is that the field has reached a level of
maturity where the tools can encapsulate much of the complexity in black boxes.

One should not be ashamed to use a well-designed black box. Indeed it would be foolish for you to write your own
FFT or eigensolver math routines. Besides wasting time, you won’t reach the efficiency of a professionally tuned tool.

On the other hand, most programmers using those tools have been exposed to the basics of the theory, and could dig
out their old textbook explanation of how to cook up an FFT. This provides some baseline level of judgement in using
tools provided by others.

You are treading on newer ground. However this means there are still major discoveries to be made using these tools
in fresh applications.

Any one particularly exciting dimension to this whole situation is that exploring hyperparameters has been very
fruitful. The toolbox allows you to do just that.

Other Toolboxes
You have a plethora of alternatives available as well. You are now in a position to appreciate some comparisons.

Package Applications Language Strengths

TensorFlow Neural Nets Python, C++ Very popular.

Caffe Neural Nets Python, C++ Many research projects and
publications. 2.0 more TF-like.

Spark MLLIB Classification, Regression,
Clustering, etc.

Python, Scala, Java, R Very scalable. Widely used in
serious applications. Lots of
plugins to DL frameworks:
TensorFrames, TF on Spark,
CaffeOnSpark, Keras Elephas.

Scikit-Learn Classification, Regression,
Clustering

Python

cuDNN Neural Nets C++, GPU-based Used in many other frameworks:
TF, Caffe, etc.

Theano Neural Nets Python Lower level numerical routines.
NumPy-esque.

Torch / PyTorch Neural Nets Lua (PyTorch=Python) Was dynamic graphs (now in TF),
but big things coming in 1.0, like
Caffe 2 merge.

Keras Neural Nets Python (on top of TF, Theano) Higher level approach.

Digits Neural Nets “Caffe”, GPU-based Used with other frameworks
(only Caffe at moment).

from __future__ import print_function
import keras
from keras.datasets import mnist
from keras.models import Sequential
from keras.layers import Dense, Dropout, Flatten
from keras.layers import Conv2D, MaxPooling2D
from keras import backend as K

batch_size = 128
num_classes = 10
epochs = 12

input image dimensions
img_rows, img_cols = 28, 28

the data, split between train and test sets
(x_train, y_train), (x_test, y_test) = mnist.load_data()

if K.image_data_format() == 'channels_first':
x_train = x_train.reshape(x_train.shape[0], 1, img_rows, img_cols)
x_test = x_test.reshape(x_test.shape[0], 1, img_rows, img_cols)
input_shape = (1, img_rows, img_cols)

else:
x_train = x_train.reshape(x_train.shape[0], img_rows, img_cols, 1)
x_test = x_test.reshape(x_test.shape[0], img_rows, img_cols, 1)
input_shape = (img_rows, img_cols, 1)

x_train = x_train.astype('float32')
x_test = x_test.astype('float32')
x_train /= 255
x_test /= 255
print('x_train shape:', x_train.shape)
print(x_train.shape[0], 'train samples')
print(x_test.shape[0], 'test samples')

convert class vectors to binary class matrices
y_train = keras.utils.to_categorical(y_train, num_classes)
y_test = keras.utils.to_categorical(y_test, num_classes)

Keras
Highest Level Approach

model = Sequential()
model.add(Conv2D(32, kernel_size=(3, 3),

activation='relu',
input_shape=input_shape))

model.add(Conv2D(64, (3, 3), activation='relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.25))
model.add(Flatten())
model.add(Dense(128, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(num_classes, activation='softmax'))

model.compile(loss=keras.losses.categorical_crossentropy,
optimizer=keras.optimizers.Adadelta(),
metrics=['accuracy'])

model.fit(x_train, y_train,
batch_size=batch_size,
epochs=epochs,
verbose=1,
validation_data=(x_test, y_test))

score = model.evaluate(x_test, y_test, verbose=0)
print('Test loss:', score[0])
print('Test accuracy:', score[1])

Slightly smaller than our network, but same idea.
From https://github.com/keras-team/keras/blob/master/examples/mnist_cnn.py

Scikit-learn

Exercises

We are going to leave you with a few substantial problems that you are now equipped to tackle. Feel free to use your
extended workshop access to work on these, and remember that additional time is an easy Startup Allocation away.
Of course everything we have done is standard and you can work on these problems in any reasonable environment.

CIFAR
The CIFAR-10 dataset consists of 60,000 32x32 color images in 10 classes (airplane, auto, bird, cat, dog, ship, etc.)
with 6,000 images per class. There are 50,000 training images and 10000 test images.

ImageNet
150,000 photographs, collected from flickr and other search engines, hand labeled with the
presence or absence of 1000 object categories. Competition: http://image-
net.org/challenges/LSVRC/2017/

Kaggle Challenge
Many datasets of great diversity (crime, plants, sports, stocks, etc).
https://www.kaggle.com/datasets
There are always multiple currently running competitions you can enter. Competitions:
https://www.kaggle.com/competitions

Officially ended in 2017
Because of victory!

Demos
Ray-traced videogames soon? Recurrent CNN.

http://research.nvidia.com/sites/default/files/publications/dnn_denoise_author.pdf

Demos & Discussion

Model-Free Prediction of Large Spatiotemporally Chaotic Systems from
Data: A Reservoir Computing Approach

Jaideep Pathak, Brian Hunt, Michelle Girvan, Zhixin Lu, and Edward Ott
Phys. Rev. Lett. 120, 024102 – Published 12 January 2018

A wise man once (not that long ago) told me "John, I don't
need a neural net to rediscover conservation of energy."

Demos
Style vs. Content: A little more subtle

Grab it at https://github.com/NVIDIA/FastPhotoStyle

Tomorrow
If Only...

Nice video at
http://stylegan.xyz/video

What is reality?

Where did they get their hyperparameters?

...

...

Credits

This talk has benefited from the generous use of materials from NVIDIA and Christopher Olah in particular.

The NVIDIA materials were drawn from their excellent Deep Learning Institute

https://developer.nvidia.com/teaching-kits

Christopher Olah’s blog is insightful and not to be missed if you are interested in this field.

http://colah.github.io/

Juergen Schmidhuber, one of the giants in the field, has written the definitive summary (up through 2014) of the
deep learning history and landscape:

Deep Learning in Neural Networks: An Overview
https://arxiv.org/abs/1404.7828

Other materials used as credited.

Any code examples used were substantially modified from the original.

Anything not otherwise mentioned follows Apache License 2.0.

