
SINGLE NODE OPTIMISATION

10.07.2019 I ILYA ZHUKOV

PERFORMANCE AND TOOLS

HIGH-PERFORMANCE COMPUTER

IHPCSS19 2

HPC building blocks

User CN CN CN

CN CN CN

CN CN CN

Login
nodes

Disk

schedulerSSH

• Hardware

• Login and compute

nodes

• Network

• Disk

• Software

• OS

• Scheduler

• Compilers

• Libraries

NODES

IHPCSS19 3

Intel® Xeon® Processor E5-2695 v3

GPU

Disk

C0 L1

L2

C1 L1

L2

C2 L1

L2

C3 L1

L2

C4 L1

L2

C5 L1

L2

C6 L1

L2

C7 L1

L2

C8 L1

L2

C9 L1

L2

C10 L1

L2

C11 L1

L2

C12 L1

L2

C13 L1

L2

C14 L1

L2

C15 L1

L2

C16 L1

L2

C17 L1

L2

C18 L1

L2

C19 L1

L2

C20 L1

L2

C21 L1

L2

C22 L1

L2

C23 L1

L2

C24 L1

L2

C25 L1

L2

C26 L1

L2

C27 L1

L2

L3

Socket 0 Socket 1

Memory Memory
interconnect

MEMORY HIERARCHY

IHPCSS19 4

CPU

L1

L2

L3

Memory

Disk
Cheap

Slow

Large

Expensive

Fast

Small
Type Size Latency

L1 32KB ~ 4 cycles

L2 256KB ~ 11 cycles

L3 35MB ~ 60 cycles

RAM 128GB ~ 62cycles+100ns

Node storage 2x4TB ~ 1000 cycles

RSM node on Bridges

Locality
• Programs tend to use data and

instructions with addresses near or

equal to those they have used recently

• Temporal locality: recently referenced

items are likely to be referenced again in

the near future

• Spatial locality: Items with nearby

addresses tend to be referenced close

together in time

PARALLEL EXECUTION

• Instruction Level Parallelism (ILP)

• Multiple instruction pipelines

• Vector/SIMD instructions

• Single Instruction performing same operation on Multiple Data

• Multiple cores per processor

• Simultaneous Multi-Threading (SMT)

• Concurrent execution of multiple instruction streams within same processor

core

• Multiple processors

• Multiple processors per nodes, multiple nodes per system

Take advantage of all possible levels of parallelism

IHPCSS19 5

HEALTH CHECK PROTOCOL

IHPCSS19

• Does my code produce correct results?

• Does my code have performance problems?

• Which function in my code consumes the most wall clock

time?

• Does my application scale as expected?

• Does my program suffer from load imbalance?

• Is there a disproportionate time spent in communication or

synchronization?

• Is my application limited by resource bounds? (CPU, memory, I/O)

• What causes performance problem?

• How can I improve?

6

• Login to Bridges

ssh -X -p 22 <user>@bridges.psc.edu

• Copy exercises

cp /home/zhukov/ihpcss19/tutorial/mm.tar.gz $HOME

• Extract tarball

• tar -xvf mm.tar.gz

• Investigate which CPU do you use on your laptop and Bridges?

• Possible tools/utilities

• /home/zhukov/ihpcss18/tools/likwid/gcc_openmpi/bin/likwid-topology

• lstopo-no-graphics, lstopo*

• hwloc-ls

• cat /proc/cpuinfo

*not available on Bridges

PREPARATION

IHPCSS19 7

Task 0

--

CPU name: Intel(R) Xeon(R) CPU E5-2695 v3 @ 2.30GHz

CPU type: Intel Xeon Haswell EN/EP/EX processor

CPU stepping: 2

**

Hardware Thread Topology

**

Sockets: 2

Cores per socket: 14

Threads per core: 1

MATRIX-MATRIX MULTIPLICATION I
Problem description

IHPCSS19 8

• Let’s consider simple problem

𝑎0,0 ⋯ 𝑎0,𝑙−1
⋮ ⋱ ⋮

𝑎𝑛−1,0 ⋯ 𝑎𝑛−1,𝑙−1

𝑏0,0 ⋯ 𝑏0,𝑚−1
⋮ ⋱ ⋮

𝑏𝑙−1,0 ⋯ 𝑏𝑙−1,𝑚−1

=

𝑐0,0 ⋯ 𝑐0,𝑚−1
⋮ ⋱ ⋮

𝑐𝑛−1,0 ⋯ 𝑐𝑛−1,𝑚−1

where A is a n x l matrix and B is a l x m matrix and C computed as follows

𝑐𝑖,𝑗 = 𝑘=0
𝑙−1 𝑎𝑖,𝑘𝑏𝑘,𝑗

• For simplicity reason consider square matrices, i.e. n=l=m

• For correctness checking assume B is an identity matrix, i.e. AB=A

• Example

1 9 8
4 −2 3
14 42 0

1 0 0
0 1 0
0 0 1

=
1 9 8
4 −2 3
14 42 0

DO NOT REINVENT A WHEEL! USE LIBS!

IHPCSS19 9

Task 1 matrix-matrix multiplication with library

• Load GNU Scientific Library

module load GSL

• Use GNU Scientific Library for matrix-matrix multiplication

• https://www.gnu.org/software/gsl/

• See 01_mm_libs/tasks/README

• To build: make

• To run: ./mm <matrix_size>

• Implement time measurement of actual computation with gettimeofday

• http://man7.org/linux/man-pages/man2/gettimeofday.2.html

• Measure computation time for matrices sizes 1024, 2048, 4096 and note results

Library 1024 2048 4096

GSL 0.49 6.35 64.48

MKL serial 0.05 0.39 3.09

Wallclock time of matrix-matrix multiplication on Bridges

INCORRECT RESULTS?!

IHPCSS19

• GDB: The GNU Project Debugger

• https://www.gnu.org/software/gdb/

• Typical workflow

• Compile application with -g flag

• gdb --args <executable>

<list_of_args>

10

Use GDB!

GDB cheat sheet

run Starts application with given arguments

list Shows the current or given source context.

<filename>:<function>, <filename>:<line_number>

break Create breakpoint

L : function name, line LN , or FILE:LN

next Go to next instruction (source line) but donʻt dive into

functions.

step Go to next instruction (source line), diving into function.

continue Continue normal execution.

print Print content of variable/memory location/register.

set var

<variable_name>=<value>

Change the content of a variable to the

given value.

thread <thread #> Switch to <thread #>

info threads Info about existing threads

bt Print backtrace of all stack frames

<ENTER> Execute the previously executed command again

quit Exit from the debugger

Note: GDB is not perfect beyond single process

Alternatives: TotalView, DDT

SOMETHING WRONG WITH MEMORY?!

IHPCSS19

• Valgrind - instrumentation framework for building dynamic analysis tools

• http://valgrind.org/

• Typical workflow

• valgrind --tool=<tool> <executable>

• Frequently used tools

• memcheck – memory leaks

• cachegrind – cache usage profiling

• massif – heap memory usage profiling

• callgrind – call graph tracing

• drd – data race condition detection

• helgrind – deadlock/livelock detection

11

Use Valgrind!

==13754==

==13754== HEAP SUMMARY:

==13754== in use at exit: 2,097,152 bytes in 1 blocks

==13754== total heap usage: 3 allocs, 2 frees, 6,291,456 bytes allocated

==13754==

==13754== LEAK SUMMARY:

==13754== definitely lost: 2,097,152 bytes in 1 blocks

==13754== indirectly lost: 0 bytes in 0 blocks

==13754== possibly lost: 0 bytes in 0 blocks

==13754== still reachable: 0 bytes in 0 blocks

==13754== suppressed: 0 bytes in 0 blocks

Memory leaks analysis with Valgrind

WHICH IS TIME CONSUMING ROUTINE?

IHPCSS19

• gprof – profiling tool

• Part of binutils

• Uses sampling and instrumentation

• https://sourceware.org/binutils/docs/gprof/

• Typical workflow

• compile/link with -pg option

• Set output file (by default gmon.out)

• export GMON_OUT_PREFIX=<gprof_output_file>

• To see profile and callpath

• gprof <executable> <gprof_output_file>

• To see only profile

• gprof -p -b <executable> <gprof_output_file>

• To see only callpath

• gprof -q -b <executable> <gprof_output_file>

12

Use gprof!

% cumulative self self total

time seconds seconds calls s/call s/call name

100.18 44.87 44.87 1 44.87 44.87 compute

0.09 44.91 0.04 1 0.04 0.04 assign

0.00 44.91 0.00 1 0.00 0.00 allocate

0.00 44.91 0.00 1 0.00 0.00 check_results

0.00 44.91 0.00 1 0.00 0.00 free_memory

index % time self children called name

[1] 100.0 0.00 44.91 main [1]

44.87 0.00 1/1 compute [2]

0.04 0.00 1/1 assign [3]

0.00 0.00 1/1 allocate [4]

0.00 0.00 1/1 check_results [5]

0.00 0.00 1/1 free_memory [6]

44.87 0.00 1/1 main [1]

[2] 99.9 44.87 0.00 1 compute [2]

0.04 0.00 1/1 main [1]

[3] 0.1 0.04 0.00 1 assign [3]

0.00 0.00 1/1 main [1]

[4] 0.0 0.00 0.00 1 allocate [4]

0.00 0.00 1/1 main [1]

[5] 0.0 0.00 0.00 1 check_results [5]

0.00 0.00 1/1 main [1]

[6] 0.0 0.00 0.00 1 free_memory [6]

Flat profile with gprof

Callpath with gprof

Note: gprof is not reliable for multithreaded applications

Alternatives: Score-P, TAU, Extrae, Vtune, HPCToolkit

I WANT TO KNOW EVEN MORE!

IHPCSS19

• perf - Linux profiling with performance counters

• https://perf.wiki.kernel.org/index.php/Tutorial

• Typical workflow

• See available metrics

• perf list

• Collect metrics

• Typical way

• perf stat -e <metrics>,<metric>,... <executable> <list_of_args>

• Detailed mode

• perf stat -d <executable> <list_of_args>

• Collect profile

• perf record <executable> <list_of_args>

• Visualize profile

• perf report

13

Use perf!
perf stat -e instructions,ref-cycles ./mm 1024

Square matrix multiplication AxB with size: 1024 Repetitions: 1

Memory allocation: 0.00s

Set matrix values: 0.01s

0 matrix-matrix multiplication: 2.87s

AVG time: 2.87s MIN time: 2.87s

Program terminated SUCCESSFULLY

Free memory: 0.00s

Performance counter stats for './mm 1024':

10.833.024.194 instructions:u

7.164.501.650 cycles:u

2,888547659 seconds time elapsed

Performance counters with perf

Alternatives: PAPI, likwid

MATRIX-MATRIX MULTIPLICATION
Typical implementation. Only for learning!!!

IHPCSS19 14

• The typical implementation for square matrices uses three nested loops

for (i = 0; i < size; i++)

for (j = 0; j < size; j++)

for (k = 0; k < size; k++)

c[i * size + j] += a[i * size + k] * b[k * size + j];

NAÏVE IMPLEMENTATION

IHPCSS19 15

Task 2 matrix-matrix multiplication

• See 02_mm_naive/tasks/README

• Find error with gdb

• Find and fix memory leak with Valgrind

• Profile application with gprof

• Measure execution time for matrices sizes 1024, 2048 and note results

• Compare results with GSL implementation

1024 2048 4096

GSL 0.49 6.35 64.48

MKL serial 0.05 0.39 3.09

Naïve 3.15 52.56 794.26

Wallclock time of matrix-matrix multiplication on Bridges

MATRIX-MATRIX MULTIPLICATION
Typical implementation. Only for learning!!!

IHPCSS19 16

• The typical implementation for square matrices uses three nested loops

for (i = 0; i < matrix_size; i++)

for (j = 0; j < matrix_size; j++)

for (k = 0; k < matrix_size; k++)

c[i * matrix_size + j] += a[i * matrix_size + k] * b[k * matrix_size + j];

MATRIX-MATRIX MULTIPLICATION

IHPCSS19 17

perf stat -d ./mm 1024 1

Square matrix multiplication AxB with size: 1024 Repetitions: 1

Memory allocation: 0.00s

Set matrix values: 0.01s

0 matrix-matrix multiplication: 3.02s

AVG time: 3.02s MIN time: 3.02s

Program terminated SUCCESSFULLY

Free memory: 0.00s

Performance counter stats for './mm 1024 1':

3036,334190 task-clock:u (msec) # 1,000 CPUs utilized

0 context-switches:u # 0,000 K/sec

0 cpu-migrations:u # 0,000 K/sec

932 page-faults:u # 0,307 K/sec

8.680.514.276 cycles:u # 2,859 GHz (49,95%)

9.749.381.160 instructions:u # 1,12 insn per cycle (62,46%)

1.093.489.871 branches:u # 360,135 M/sec (62,48%)

1.090.744 branch-misses:u # 0,10% of all branches (62,52%)

2.169.019.648 L1-dcache-loads:u # 714,355 M/sec (62,47%)

1.113.839.847 L1-dcache-load-misses:u # 51,35% of all L1-dcache hits (25,00%)

1.073.773.926 LLC-loads:u # 353,642 M/sec (24,97%)

71.971 LLC-load-misses:u # 0,01% of all LL-cache hits (37,45%)

3,037077084 seconds time elapsed

Ideal IPC for some CPUs: https://en.wikipedia.org/wiki/Instructions_per_cycle

MATRIX-MATRIX MULTIPLICATION

IHPCSS19 18

• Naïve implementation

for (i = 0; i < matrix_size; i++)

for (j = 0; j < matrix_size; j++)

for (k = 0; k < matrix_size; k++)

c[i * size + j] += a[i * matrix_size + k] * b[k * matrix_size + j];

+= *+= *+= *+= *+= *+= *+= *+= *+= *+= *+= *+= *+= *

C A B

MATRIX-MATRIX MULTIPLICATION

IHPCSS19 19

• Interchange loop to improve data usage

for (i = 0; i < matrix_size; i++)

for (k = 0; k < matrix_size; k++)

for (j = 0; j < matrix_size; j++)

c[i * matrix_size + j] += a[i * matrix_size + k] * b[k * matrix_size + j];

+= *+= *+= *+= *+= *+= *+= *+= *+= *+= *+= *

C A B

LOOP INTERCHANGE

IHPCSS19 20

Task 3 loop interchange

• See 03_mm_reorder/tasks/README

• Make loop interchange

• Did perf metrics improve?

• Measure execution time for matrices sizes 1024, 2048, 4096 and compare results

1024 2048 4096

GSL 0.49 6.35 64.48

MKL

serial

0.05 0.39 3.09

Naïve 3.15 52.56 794.26

Reorder 0.90 8.57 71.19

Wallclock time of matrix-matrix

multiplication on Bridges

Can we do better?

• Cache blocking

(see 04_mm_cache_block)

• Allocate aligned memory

(see 05_mm_mem_align)

LOOP INTERCHANGE

IHPCSS19 21

perf stat -d ./mm 1024 1

Square matrix multiplication AxB with size: 1024 Repetitions: 1

Memory allocation: 0.00s

Set matrix values: 0.03s

0 matrix-matrix multiplication: 1.10s

AVG time: 1.10s MIN time: 1.10s

Program terminated SUCCESSFULLY

Free memory: 0.00s

Performance counter stats for './mm 1024 1':

1140,660331 task-clock:u (msec) # 0,999 CPUs utilized

0 context-switches:u # 0,000 K/sec

0 cpu-migrations:u # 0,000 K/sec

671 page-faults:u # 0,588 K/sec

2.964.541.975 cycles:u # 2,599 GHz (49,81%)

10.839.832.875 instructions:u # 3,66 insn per cycle (62,42%)

1.095.139.976 branches:u # 960,093 M/sec (62,51%)

1.091.065 branch-misses:u # 0,10% of all branches (62,66%)

3.251.898.378 L1-dcache-loads:u # 2850,891 M/sec (62,38%)

135.735.582 L1-dcache-load-misses:u # 4,17% of all L1-dcache hits (24,89%)

6.006.914 LLC-loads:u # 5,266 M/sec (24,89%)

56.727 LLC-load-misses:u # 0,94% of all LL-cache hits (37,34%)

1,141555620 seconds time elapsed

PARALLEL EXECUTION

• Instruction Level Parallelism (ILP)

• Multiple instruction pipelines

• Vector/SIMD instructions

• Single Instruction performing same operation on Multiple Data

• Multiple cores per processor

• Simultaneous Multi-Threading (SMT)

• Concurrent execution of multiple instruction streams within same processor

core

• Multiple processors

• Multiple processors per nodes, multiple nodes per system

Take advantage of all possible levels of parallelism

IHPCSS19 22

INSTRUCTION LEVEL PARALLELISM (ILP)

Ford’s assembly line (pipeline)

IHPCSS19 23

• ILP - parallelism among instructions from small code areas which are

independent of one another, e.g. overlapping of instructions in a pipeline

Weld car
body

Assemble
motor

Paint car
body

Modern processor pipeline (simplified)

F D L WE

F D L WE

F D L WE

Instruction 1

Instruction 2

Instruction 3

F – fetch instruction
D – decode instruction
L – load operation
E – execute instruction
W –write result

PIPELINING: LOOP UNROLLING

IHPCSS19 24

• Let’s take current version of matrix-matrix

• Apply loop unrolling

for (i = 0; i < matrix_size; i++)

for (k = 0; k < matrix_size; k++)

for (j = 0; j < matrix_size; j++)

c[i * matrix_size + j] += a[i * matrix_size + k] * b[k * matrix_size + j];

for (i = 0; i < matrix_size; i++)

for (k = 0; k < matrix_size; k++)

tmp = a[i * matrix_size + k];

for (j = 0; j < matrix_size; j+=2) {

c[i * matrix_size + j] += tmp * b[k * matrix_size + j];

c[i * matrix_size + j + 1] += tmp * b[k * matrix_size + j + 1];

}

Note: better leave unrolling to compiler!

LOOP UNROLLING

IHPCSS19 25

Task 6 loop unrolling

• See 06_mm_loop_unroll/tasks/README

• Try compiler options for unrolling. Did it improve runtime?

• Make loop unrolling

• Did perf metrics improve?

• Measure execution time for matrices sizes 1024, 2048, 4096 and compare results

1024 2048 4096

GSL 0.49 6.35 64.48

MKL

serial

0.05 0.39 3.09

Naïve 3.15 52.56 794.26

Reorder 0.90 8.57 71.19

Unroll 0.60 6.17 60.08

Wallclock time of matrix-matrix multiplication on Bridges

LOOP UNROLLING

IHPCSS19 26

perf stat -d ./mm 1024

Square matrix multiplication AxB with size: 1024 Repetitions: 1

Memory allocation: 0.00s

Set matrix values: 0.03s

0 matrix-matrix multiplication: 0.73s

AVG time: 0.73s MIN time: 0.73s

Program terminated SUCCESSFULLY

Free memory: 0.00s

Performance counter stats for './mm 1024':

762,635794 task-clock:u (msec) # 0,999 CPUs utilized

0 context-switches:u # 0,000 K/sec

0 cpu-migrations:u # 0,000 K/sec

671 page-faults:u # 0,880 K/sec

2.006.516.947 cycles:u # 2,631 GHz (49,95%)

8.130.398.227 instructions:u # 4,05 insn per cycle (62,53%)

554.523.479 branches:u # 727,114 M/sec (62,64%)

1.095.062 branch-misses:u # 0,20% of all branches (62,64%)

2.185.664.447 L1-dcache-loads:u # 2865,935 M/sec (62,25%)

135.823.947 L1-dcache-load-misses:u # 6,21% of all L1-dcache hits (24,91%)

2.814.570 LLC-loads:u # 3,691 M/sec (24,91%)

19.911 LLC-load-misses:u # 0,71% of all LL-cache hits (37,37%)

0,763548697 seconds time elapsed

INSTRUCTION LEVEL PARALLELISM (ILP)
Best practice and tools

IHPCSS19 27

• Consider small chunk of code

• Try fully utilize pipelines as much as possible

• Organize you data to avoid cache misses, e.g. AoS vs SoA

• Avoid data hazards, e.g. data dependencies, branches etc.

• Identify your limits with Roofline model

• Consider IPC/CPI for performance measurements

• Play with compiler options, e.g. fast math, unrolling, etc.

• Use tools

• Perf, PAPI, Likwid for hardware counters

• Valgrind for memory accesses

• Intel Vtune, gprof for profiles and analytics

• Intel Advisor for roofline model

PARALLEL EXECUTION

• Instruction Level Parallelism (ILP)

• Multiple instruction pipelines

• Vector/SIMD instructions

• Single Instruction performing same operation on Multiple Data

• Multiple cores per processor

• Simultaneous Multi-Threading (SMT)

• Concurrent execution of multiple instruction streams within same processor

core

• Multiple processors

• Multiple processors per nodes, multiple nodes per system

Take advantage of all possible levels of parallelism

IHPCSS19 28

VECTORISATION / SIMD

• Vector instructions exploit data level parallelism by operating on

data items in parallel

• E.g. vector multiplication

IHPCSS19 29

𝑧1
𝑧2
𝑧3

=
𝑥1
𝑥2
𝑥3

∗
𝑦1
𝑦2
𝑦3

• In many cases compiler can automatically vectorise

• User can provide hints to compiler what should/can be vectorised

• Simplify memory accesses, use pragmas

VECTORISATION

IHPCSS19 30

Task 7 SIMD

• See 07_mm_simd/tasks/README

• Verify with compiler if the code was autovectorised

• Help compiler to autovectorise

• Did perf metrics improve?

• Measure execution time for matrices sizes 1024, 2048, 4096 and compare results

1024 2048 4096

GSL 0.49 6.35 64.48

MKL

serial

0.05 0.39 3.09

Naïve 3.15 52.56 794.26

Reorder 0.90 8.57 71.19

Unroll 0.60 6.17 60.08

Vectorise 0.39 4.22 53.10

Wallclock time of matrix-matrix multiplication on Bridges

VECTORISATION

IHPCSS19 31

perf stat -d ./mm 1024 1

Square matrix multiplication AxB with size: 1024 Repetitions: 1

Memory allocation: 0.00s

Set matrix values: 0.02s

0 matrix-matrix multiplication: 0.39s

AVG time: 0.39s MIN time: 0.39s

Program terminated SUCCESSFULLY

Free memory: 0.00s

Performance counter stats for './mm 1024 1':

408,457277 task-clock:u (msec) # 0,998 CPUs utilized

0 context-switches:u # 0,000 K/sec

0 cpu-migrations:u # 0,000 K/sec

675 page-faults:u # 0,002 M/sec

1.113.721.776 cycles:u # 2,727 GHz (49,93%)

1.717.787.873 instructions:u # 1,54 insn per cycle (62,57%)

293.350.812 branches:u # 718,192 M/sec (62,57%)

1.096.038 branch-misses:u # 0,37% of all branches (62,56%)

568.390.665 L1-dcache-loads:u # 1391,555 M/sec (62,06%)

135.947.200 L1-dcache-load-misses:u # 23,92% of all L1-dcache hits (24,95%)

54.911.235 LLC-loads:u # 134,436 M/sec (24,96%)

9.061 LLC-load-misses:u # 0,02% of all LL-cache hits (37,44%)

0,409289193 seconds time elapsed

VECTORISATION
Best practice and tools

IHPCSS19 32

• Consider biggest loop

• Investigate with compiler options if it was vectorised

• Avoid data dependencies

• Avoid function calls from the loop

• Use aligned memory if possible (see 05_mm_mem_align)

• Organize you data to simplify SIMD, e.g. AoS vs SoA

• Force SIMD if possible, #pragma omp simd

• Consider your limits with Roofline model

• Use tools

• Perf, PAPI, Likwid for hardware counters

• Intel Advisor, MAQAO for detailed analytics

PARALLEL EXECUTION

• Instruction Level Parallelism (ILP)

• Multiple instruction pipelines

• Vector/SIMD instructions

• Single Instruction performing same operation on Multiple Data

• Multiple cores per processor

• Simultaneous Multi-Threading (SMT)

• Concurrent execution of multiple instruction streams within same processor

core

• Multiple processors

• Multiple processors per nodes, multiple nodes per system

Take advantage of all possible levels of parallelism

IHPCSS19 33

THREAD LEVEL PARALLELISM (TLP)

• Thread is a smallest unit of processing that can be scheduled by

operating system

• Each thread can be assigned to particular core (pinning/binding)

• Typical execution model:

IHPCSS19 34

Thread #2

Thread #1

Thread #N

…

Fork Join

• Popular Application Programming Interfaces (API):

• POSIX Threads

• OpenMP

PERFORMANCE METRICS

• A typical program has two categories of components

• Inherently sequential sections: can’t be run in parallel

• Potentially parallel sections

• Speedup

• typically S(N) < P

• Parallel efficiency

• typically E(N) < 1

Where N is the size of the problem and P the number of

processes

𝑆 𝑁, 𝑃 =
𝑇(𝑁, 1)

𝑇(𝑁, 𝑃)

𝐸 𝑁, 𝑃 =
𝑆(𝑁, 𝑃)

𝑃

IHPCSS19 35

AMDAHL’S LAW

• Assumption

• total problem size stays the same as the number of processors

increases (strong scaling)

• a is a completely serial fraction

• parallel part is 100% efficient

• Parallel runtime

• Parallel speedup

• Our code is fundamentally limited by the serial fraction

• a=0, S=P

• a=0.1, max speedup is 10, e.g. S(N,10)=5.26, S(N,1000)=9.91

𝑇 𝑁, 𝑃 = α𝑇 𝑁, 1 +
1 − α 𝑇(𝑁, 1)

𝑃

S 𝑁, 𝑃 =
𝑇(𝑁,1)

𝑇(𝑁,𝑃)
=

1

α+
1−α

𝑃

IHPCSS19 36

GUSTAFSON’S LAW

• Assumption

• the problem size increases at the same rate as the number of processors,
keeping the amount of work per processor the same (weak scaling)

• a is a completely serial fraction

• parallel part is 100% efficient

• Runtime on single process

• Parallel runtime

• Parallel speedup

• Limitation by the serial fraction becomes less

• a=0, S=P

• a=0.1, e.g. S(N,10)=9.10, S(N,1000)=900.10

S 𝑁, 𝑃 =
𝑇(𝑁,1)

𝑇(𝑁,𝑃)
= α + 1 − α 𝑃

𝑇 𝑁, 1 = α𝑇 𝑁, 1 + 1 − α 𝑃𝑇(𝑁, 1)

𝑇 𝑁, 𝑃 = α𝑇 𝑁, 1 + 1 − α 𝑇(𝑁, 1)

IHPCSS19 37

OPENMP PARALLELISATION

IHPCSS19 38

Task 8 OpenMP parallelisation

• See 08_mm_omp/tasks/README

• Request allocation in interactive session

interact -R performance -p RM -N 1 -t 1:00:00

• Apply OpenMP parallelisation

• Apply strong and weak scaling

• Compute speedup and efficiency and plot results

Strong scaling Weak scaling

Compare OpenMP and MKL

threaded (4096x4096)

• 28 OpenMP threads 4.35s

• MKL 0.16s (see

10_mm_mkl_thread)

THREAD LEVEL PARALLELISM (TLP)
Best practice and tools

IHPCSS19 39

• Check threads binding

• Think about memory locality (see 09_mm_omp_numa)

• Try fully utilize threads across program life time

• Avoid unnecessary synchronization

• Balance work across threads, e.g. scheduling policies

• Use tools

• Likwid, hwlock for correct bindings

• ThreadSanitizer for data races and deadlocks detection

• Perf, PAPI for hardware counters

• Intel Vtune, Score-P, Cube, Scalasca for detailed analytics

PARALLEL EXECUTION

• Instruction Level Parallelism (ILP)

• Multiple instruction pipelines

• Vector/SIMD instructions

• Single Instruction performing same operation on Multiple Data

• Multiple cores per processor

• Simultaneous Multi-Threading (SMT) NOT SUPPORTED ON BRIDGES

• Concurrent execution of multiple instruction streams within same processor

core

• Multiple processors

• Multiple processors per nodes, multiple nodes per system

Take advantage of all possible levels of parallelism

IHPCSS19 40

SIMULTANEOUS MULTI-THREADING (SMT)

• SMT (aka Hyper-threading, hardware threading) architecture allows to

execute simultaneously more than one thread per core

• TLP and ILP are exploited simultaneously

• Additional architectural requirements

• Dynamic management of resources

• Duplication of resources for each thread

• Capability for instructions from multiple threads to commit

• OS sees SMT as multiple logical processors

IHPCSS19 41

PARALLEL EXECUTION

• Instruction Level Parallelism (ILP)

• Multiple instruction pipelines

• Vector/SIMD instructions

• Single Instruction performing same operation on Multiple Data

• Multiple cores per processor

• Processors with multiple cores

• Simultaneous Multi-Threading (SMT)

• Concurrent execution of multiple instruction streams within same processor

core

• Multiple processors

• Multiple processors per nodes, multiple nodes per system

Take advantage of all possible levels of parallelism

IHPCSS19 42

MULTIPLE PROCESSORS

IHPCSS19 43

User CN CN CN

CN CN CN

CN CN CN

Login
nodes

Disk

schedulerSSH

• Communication over

network is required

• Typical programming

interface

• MPI

• SHMEM

• See naïve implementation 11_mm_omp_mpi

MULTIPLE PROCESSORS

• Check MPI/threads binding

• Think about domain decomposition

• Think about communication patterns

• Avoid unnecessary synchronization/communication

• Balance work across MPIs/threads

• Use tools

• Perf, PAPI for hardware counters

• Score-P, Cube, Scalasca for detailed analytics

• Vampir for trace visualisation

Best practice and tools

IHPCSS19 44

LITERATURE

• David A. Patterson and John L. Hennessy. Computer

Architecture: a Quantitative Approach. Morgan Kaufmann

Publishers Inc., San Francisco, CA, USA, 1990.

• Hager, Georg, and Gerhard Wellein. Introduction to High

Performance Computing for Scientists and Engineers. Boca

Raton, Fla.: CRC Press, 2011.

• Anderson, Matthew, C. Gordon Bell, Maciej Brodowicz, and

Thomas Sterling. High Performance Computing: Modern

Systems and Practices. Cambridge, MA: Elsevier Morgan

Kaufmann Publishers, 2018.

IHPCSS19 45

