
OpenMP 4 (and now 5.0)

John Urbanic
Parallel Computing Scientist

Pittsburgh Supercomputing Center

Copyright 2019

Classic OpenMP

OpenMP was designed to replace low-level and tedious solutions like POSIX threads, or Pthreads.

OpenMP was originally targeted towards controlling capable and completely independent processors, with

shared memory. The most common such configurations today are the many multi-cored chips we all use. You

might have dozens of threads, each of which takes some time to start or complete.

In return for the flexibility to use those processors to their fullest extent, OpenMP assumes that you know

what you are doing. You prescribe what how you want the threads to behave and the compiler faithfully

carries it out.

Then Came This

PCI Bus

CPU Memory GPU Memory

CPU GPU

A(i,j) A(i+1,j)A(i-1,j)
A(i,j-1)

A(i+1,j)

A(i,j) A(i+1,j)A(i-1,j)

A(i,j-1)

A(i+1,j)

A(i,j) A(i+1,j)A(i-1,j)

A(i,j-1)

A(i+1,j)

GPUs are not CPUs

GPU require memory management. We do not simply have a single shared dataspace.

GPUs have thousands of cores.

But they aren't independent.

And they can launch very lightweight threads.

But it seems like the OpenMP approach provides a good starting point to get away from the low-level and

tedious CUDA API...

Original Intention

OpenMP 3 OpenMP 4.5 OpenMP 5OpenMP 4

OpenACC 1 OpenACC 2 OpenACC 2.5

Let OpenACC evolve rapidly without disturbing the mature OpenMP standard.

They can merge somewhere around version 4.0.

Meanwhile...

Since the days of RISC vs. CISC,

Intel has mastered the art of

figuring out what is important

about a new processing

technology and saying “why can’t

we do this in x86?”

The Intel Many Integrated Core

(MIC) architecture is about large

die, simpler circuit, and much

more parallelism, in the x86 line.

Courtesy Dan Stanzione, TACC

What is was MIC?

Basic Design Ideas:

• Leverage x86 architecture (a CPU with many cores)

• Use x86 cores that are simpler, but allow for more compute throughput

• Leverage existing x86 programming models

• Dedicate much of the silicon to floating point ops., keep some cache(s)

• Keep cache-coherency protocol

• Increase floating-point throughput per core

• Implement as a separate device

• Strip expensive features (out-of-order execution, branch prediction, etc.)

• Widened SIMD registers for more throughput (512 bit)

• Fast (GDDR5) memory on card

Courtesy Dan Stanzione, TACC

Latest last MIC Architecture

• Many cores on the die

• L1 and L2 cache

• Bidirectional ring

network for L2 Memory

and PCIe connection

Courtesy Dan Stanzione, TACC

Implications for the OpenMP/OpenACC Merge

OpenMP 3

OpenMP 4.5 OpenMP 5OpenMP 4

OpenACC 1 OpenACC 2 OpenACC 2.5

Intel and NVIDIA have both influenced their favored approached to make them more amenable

to their own devices.

NVIDIA

Intel

OpenMP ?

OpenMP 4.0

The OpenMP 4.0 standard did incorporate the features needed for accelerators, with an emphasis on Intel-

like devices. We are left with some differences.

OpenMP takes its traditional prescriptive approach ("this is what I want you to do"), while OpenACC could

afford to start with a more modern (compilers are smarter) descriptive approach ("here is some

parallelizable stuff, do something smart"). This is practically visible in such things as OpenMP's insistence

that you identify loop dependencies, versus OpenACC's kernel directive, and its ability to spot them for you.

OpenMP assumes that every thread has its own synchronization control (barriers, locks), because real

processors can do whatever they want, whenever. GPUs do not have that at all levels. For example, NVIDIA

GPUs have synchronization at the warp level, but not the thread block level. There are implications

regarding this difference such as no OpenACC async/wait in parallel regions or kernels.

In general, you might observe that OpenMP was built when threads were limited and start up overhead was

considerable (as it still is on CPUs). The design reflects the need to control for this. OpenACC starts with

devices built around thousands of very, very lightweight threads.

They are also complementary and can be used together very well.

OpenMP 4.0 Data Migration

The most obvious improvements for accelerators are the data migration

commands. These look very similar to OpenACC.

#pragma omp target device(0) map(tofrom:B)

OpenMP vs. OpenACC Data Constructs

OpenMP

target data

target enter data

target exit data

target update

declare target

OpenACC

data

enter data

exit data

update

declare

OpenMP vs. OpenACC Data Clauses

OpenMP

map(to:...)

map(from:...)

map(tofrom:...)

map(alloc:...)

map(release:...)

map(delete:...)

OpenACC

copyin(...)

copyout(...)

copy(...)

create(...)

delete(...)

delete(...) finalize

OpenMP 5 has also embraced the NVIDIA "unified shared memory" paradigm

#pragma omp requires unified_shared_memory

complex_deep_data * cdp = create_array_of_data();

#pragma omp target //Notice no mapping clauses!
operate_on_data(cdp);

Just like with NVIDIA Unified Memory, this is hopelessly naïve and is not used in production
code. It is often recommended for a "first pass" (but I find that counter-productive).

The closely related deep copy directives (declare mapper) can be useful to aid in moving
pointer-based data. As can the allocate clauses.

OpenMP vs. OpenACC Compute Constructs

OpenMP

target

teams

distribute

parallel

for / do

simd

is_device_ptr(...)

OpenACC

parallel / kernels

parallel / kernels

loop gang

parallel / kernels

loop worker or loop gang

loop vector

deviceptr(...)

OpenMP vs. OpenACC Differences

OpenMP

device(n)

depend(to:a)

depend(from:b)

nowait

loops, tasks, sections

atomic

master, single, critical, barrier,

locks, ordered, flush, cancel

OpenACC

async(n)

async(n)

async

loops

atomic

SAXPY in OpenMP 4.0 on NVIDIA

int main(int argc, const char* argv[]) {
int n = 10240; floata = 2.0f; floatb = 3.0f;
float*x = (float*) malloc(n * sizeof(float));
float*y = (float*) malloc(n * sizeof(float));

// Run SAXPY TWICE inside data region
#pragma omp target data map(to:x)
{
#pragma omp target map(tofrom:y)
#pragma omp teams
#pragma omp distribute
#pragma omp parallel for

for(inti = 0; i < n; ++i){
y[i] = a*x[i] + y[i];

}
#pragma omp target map(tofrom:y)
#pragma omp teams
#pragma omp distribute
#pragma omp parallel for

for(inti = 0; i < n; ++i){
y[i] = b*x[i] + y[i];

}
}
}

Courtesy Christian Terboven

Comparing OpenACC with OpenMP 4.0 on NVIDIA & Phi

#pragma omp target device(0) map(tofrom:B)
#pragma omp parallel for
for (i=0; i<N; i++)

B[i] += sin(B[i]);

First two examples

Courtesy Christian Terboven

#pragma omp target device(0) map(tofrom:B)
#pragma omp teams num_teams(num_blocks) num_threads(bsize)
#pragma omp distribute
for (i=0; i<N; i += num_blocks)

#pragma omp parallel for
for (b = i; b < i+num_blocks; b++)

B[b] += sin(B[b]);

#pragma acc kernels
for (i=0; i<N; ++i)

B[i] += sin(B[i]);

OpenMP 4.0 for Intel Xeon Phi

OpenMP 4.0 for NVIDIA GPU

OpenACC for NVIDIA GPU

OpenMP 4.0 Across Architectures

#if defined FORCPU

#pragma omp parallel for simd

#elif defined FORKNC

#pragma omp target teams distribute parallel for simd

#elif defined FORGPU

#pragma omp target teams distribute parallel for \

schedule(static,1)

#elif defined FORKNL

#pragma omp parallel for simd schedule(dynamic)

#endif

for(int j = 0; j < n; ++j)

x[j] += a*y[j];

Courtesy Michael Wolfe

OpenMP now has a number of OpenACC-like metadirectives to help cope with this confusion:

#pragma omp target map(to:a,b) map(from:c)
#pragma omp metadrictive when (device={arch(nvptx)}: teams loop) default (parallel loop)
for (i = 1; i<n; i++)

c[i] = a[i] * b[i]

And also variant functions to substitute code for different targets.

#pragma omp declare target
int some_routine(int a){

//do things in serial way
}

#pragma omp declare variant (int some_routine(int a)) match(context={target} \
device={arch(nvptx)})

int some_routine_gpu(int a){
//gpu optimized code

}

OpenMP 4.0 Across Compilers

#pragma omp target teams distribute
for(int ii = 0; ii < y; ++ii)

Subtle and confusing? You bet.

For a nice discussion of these examples visit their authors at

https://www.openmp.org/wp-content/uploads/Matt_openmp-booth-talk.pdf

Cray C Compiler (v8.5)

Clang Compiler (alpha)

GCC C Compiler (v6.1))

Intel C Compiler (v16.0)

#pragma omp target teams distribute \
parallel for chedule(static,1)

for(int ii = 0; ii < y; ++ii)

#pragma omp target teams distribute \
parallel for

for(int ii = 0; ii < y; ++ii)

#pragma omp target
#pragma omp parallel
for for(int ii = 0; ii < y; ++ii)

Latest Data.
From the excellent paper Is OpenMP 4.5 Target Off-load Ready for Real Life? A Case Study of Three

Benchmark Kernels (Diaz, Jost, Chandrasekaran, Pino) we have some recent data:

In summary, using NPB benchmarks (FFT, Gauss Seidel, Multi-Grid) on leadership class platforms (Titan

and Summit) using multiple compilers (clang, gcc, PGI, Cray, IBM), OpenMP is not yet competitive with

OpenACC on GPUs.

A very interesting side-note is that OpenACC kernels and loop performed the same.

So, at this time…

If you are using Phi Knights Corner or Knights Landing, you are probably going to be using the

Intel OpenMP 4+ release. Unless you use it in cache mode, and then this is moot (more later).

If you are using NVIDIA GPUs, you are going to be using OpenACC.

Of course, there are other ways of programming both of these devices. You might treat Phi as MPI

cores and use CUDA on NVIDIA , for example. But if the directive based approach is for you, then

your path is clear. I don’t attempt to discuss the many other types of accelerators here (AMD, DSPs,

FPGAs, ARM), but these techniques apply there as well.

And as you should now suspect, even if it takes a while for these to merge as a standard, it is not a

big jump for you to move between them.

High

Capacity

Memory

High Bandwidth

Memory

Shared Cache

$ $ $ $ $ $ $ $

Knights Landing
Is OpenMP 4 moot?*

OpenMP 5 and the Knights Landing architecture seem to

be suggesting we should use cache mode and forget all

about the data management.

Developments thus far show this to be a popular, if

inefficient, approach.

With the deprecation of the Phi family, perhaps all of

these target-oriented extensions are moot...

Unless this takes over from OpenACC as the dominant

way of programming NVIDIA devices.

*Note we are just talking about data management here.

OpenMP 4.0 has some other nifty features.

Much earlier I mentioned that vector instructions fall into the realm of “things you hope the compiler

addresses”. However as they have become so critical achieving available performance on newer

devices, the OpenMP 4.0 standard has included a simd directive to help you help the compiler. There

are two main calls for it.

1) Indicate a simple loop that should be vectorized. It may be an inner loop on a parallel for, or it

could be standalone.

#pragma omp parallel

{

#pragma omp for

for (int i=0; i<N; i++) {

#pragma omp simd safelen(18)

for (int j=18; j<N−18; j++) {

A[i][j] = A[i][j−18] + sinf(B[i][j]);

B[i][j] = B[i][j+18] + cosf(A[i][j]);

}

}

}

OpenMP 4.0 SIMD Extension

There is dependency that

prohibits vectorization.

However, the code can be

vectorized for any given vector

length for array B and for

vectors shorter than 18

elements for array A.

2) Indicate that a function is vectorizable.

#pragma omp declare simd

float some_func(float x) {

...

...

}

#pragma omp declare simd

extern float some_func(float);

void other_func(float *restrict a, float *restrict x, int n) {

for (int i=0; i<n; i++) a[i] = some_func(x[i]);

}

There are a ton of clauses (private, reduction, etc.) that help you to assure safe conditions for

vectorization. They won’t get our attention today.

We won’t hype these any further. Suffice it to say that if the compiler report indicates that you are

missing vectorization opportunities, this adds a portable tool.

OpenMP 4.0 SIMD Extension

OpenMP 5.0 shows the real new focus of OpenMP. It is a recognition of the increasing importance of the memory hierarchies found in real

devices, and how to manage it. Just on a single node (our concern for OpenMP) we have:

OpenMP 5.0
A New Emphasis

• Registers (including vector registers)

• Caches (multiple levels)

• RAM (processor local or NUMA memory)

• HBM?

• Accelerators?

• NVM?

These are being accessed in various patterns by:

• Loops (hopefully vectorized)

• Threads

• Processes

• Cores

• Processors

ORNL Cray XC30 Node

The specifiers in the new spec give you some idea of how many ways we can characterize this.

distance ≈ near, far Specifies the relative physical distance of the memory space with respect to the task the request binds to.

bandwidth ≈ highest, lowest Specifies the relative bandwidth of the memory space with respect to other memories in the system

latency ≈ highest, lowest Specifies the relative latency of the memory space with respect to other memories in the system.

location = Specifies the physical location of the memory space.

optimized = bandwidth, latency, capacity, none Specifies if the memory space underlying technology is optimized to maximize a

certain characteristic. The exact mapping of these values to actual technologies is implementation defined.

pagesize = positive integer Specifies the size of the pages used by the memory space.

permission = r, w, rw Specifies if read operations (r), write operations (w) or both (rw) are supported by the memory space.

capacity ≥ positive integer Specifies the physical capacity in bytes of the memory space. available ≥ positive integer Specifies the

current available capacity for new allocations in the memory space.

OpenMP 5.0

These new specifiers are used in multiple ways throughout the spec. They will show up quite
naturally in the data management clauses for the accelerators that we have just discussed.

They also have more accessible, and universal uses. One topic that we haven't had time for today,
but is frequently of interest when optimizing multi-threaded codes, is data affinity. Many common
multi-core systems present the main RAM memory as a unified space. In reality the some sections
of the memory can be closer to certain cores than other sections. And certainly the cache is closer
to particular cores. It is nice if our threads can run nearest the data they need.

The reason we haven't had time for this today is that the placement of threads, or their migration by
the operating system, is typically very platform dependent and the means of controlling this
behavior is often a number of overlapping bits of trivia; sometimes environment variables, other
times wrappers to run the code, or kernel settings.

OpenMP brings some standardization to this.

Data Affinity

Easy Data Affinity

Here is a good example of how easy it can be to request data/thread affinity for a couple of tasks
that we know share data.

void related_tasks(float* A, int n){

float* B;

#pragma omp task shared(B) depend(out:B) affinity(A[0:n])
{

B = compute_B(A,n);
}
#pragma omp task firstprivate(B) depend(in:B) affinity (A[0:n])
{

update_B(B);
}
#pragma omp taskwait

}

Some things we did not mention

OpenCL (Khronos Group)

Everyone supports, but not as a primary focus

Intel – OpenMP

NVIDIA – CUDA, OpenACC

AMD – now HSA (hUMA/APU oriented)

Fortran 2008+ threads (sophisticated but not consistently implemented)

C++11 threads are basic (no loops) but better than POSIX

Python threads are fake (due to Global Interpreter Lock) But you can now fix this!

DirectCompute (Microsoft) is not HPC oriented

C++ AMP (MS/AMD)

TBB (Intel C++ template library)

Cilk (Intel, now in a gcc branch)

Very C++ for threads

