1R OC

TEXAS ADVANCED COMPUTING CENTER
WWW.TACC.UTEXAS.EDU

PRACE

X |

Introduction to
OpenMP Programming ﬁ S

IHPCSS
July 7-12, 2019

PRESENTED BY: RIK=NH R ccs

Kent Milfeld / Lars Koesterke

milfeld@tacc.utexas.edu

lars@tacc.utexas.edu m t

ALVANCED RESSEARCH COMPUTING ot the UNIVERMTY

Lecture and Lab slides available at: tinyurl.com/tacc-2019-ihpcss

tinyurl.com/tacc-2019-ihpcss

Outline

OpenMP Directive Review — The Concepts

e Execution Model: Parallel Fork-Join
* Directive Syntax

* Memory Model

* Using OpenMP Directives
 Worksharing

* Directive Scope

e Clauses

 Thread Scheduling

 Data Model / Data Environment

* Synchronization

* API functions / Environment Variables

TA@@ tinyurl.com/tacc-2019-ihpcss 1 EXAS ADVANCED COMPUTING CENTER

OpenMP?

* OpenMP stands for Open Multi-Processing
* Three primary components:
— Directives to the Compiler within code (pragmas in C/C++, comments in Fortran)
— Runtime Library Routines
— Environment Variables
* http://www.openmp.org/
— OpenMP 5.0 Complete Specifications (Nov. 2018)
— OpenMP 4.5 Complete Specifications (Nov. 2015)
— OpenMP Examples 4.5 (Nov. 2015)
— OpenMP Summary Card, Reference Guide (C/C++/Fortran)

TA@@ tinyurl.com/tacc-2019-ihpcss 1 EXAS ADVANCED COMPUTING CENTER

OpenMP Constructs

OpenMP language --
“extensions” to base languag

data runtime
parallel work sharing . synchronization functions, env. Advanced stuff
environment .
variables
* creates threads e distributes work ° Sp.eCiﬁes * coordinates . e Runtime functions TaSking
among threads variables as thread execution | | . gnvironment Variables SIMD (vector)
shared or private
parallel do. for critical omp_set_num_threads() | | Locks
sec'tions shared and atomic omp_get_thread_num() Affinity
directive single private barrier Dependences
directives clauses directives OMP_NUM_THREADS Devices (offload)

10 Basic 'Components

TA@@ tinyurl.com/tacc-2019-ihpcss 1 EXAS ADVANCED COMPUTING CENTER

Execution Model

* Program begins as a single process: master thread executes serially.
* At a parallel directive (construct) a team of threads is forked.

* At end of parallel region, (team of) threads synchronize and terminate
(join) but master continues.

Parallel Parallel
) ® Serial gDirective 1 Serial g Directive 1 Serial

execution b+ <
[)
() ()
4 threads 8

6 threads

Master Thread

Team of Threads

TA@@ tinyurl.com/tacc-2019-ihpcss 1 EXAS ADVANCED COMPUTING CENTER

OpenMP Directive Scope

 OpenMP directives are are formed with comments/pragmas in the source:

FO0 ISomp
C/C++ : #pragma omp

program main F int main () { C/C++
Parallel 'Somp parallel #pragma omp parallel Applies to next
'Somp end parallel
_| 'Somp parallel #pragma omp parallel
{ :
Parallel call £oo() foo () Applies to next
Region T T block {...}
i call bar(...) bar(...)
!Somp end parallel }
end program }

TA@@ tinyurl.com/tacc-2019-ihpcss 1 EXAS ADVANCED COMPUTING CENTER

OpenMP Syntax

 Compiler directive syntax:

#pragma omp construct [clause [[,]clausel]...] C
ISomp construct [clause [[,]clause]...] Fo0
 Example
Fortran C/C++
print*,”serial” printf(“serial\n”);
ISomp parallel num_threads(4) #pragma omp parallel num_threads(4)
{
ISomp end parallel }
print*,”serial” printf(“serial\n”);

TA@@ tinyurl.com/tacc-2019-ihpcss 1 EXAS ADVANCED COMPUTING CENTER

Memory Model and Synchronization

e Every thread has access to (shared) memory.
When multiple threads are created all
threads share the same address space.

e Simultaneous updates to shared memory can create a race
condition-- Causing results change with different thread scheduling.

e Use mutual exclusion type directives to avoid race conditions - but
don’t use too many because this will serialize performance.

e Barriers are used to synchronize threads.

* A flush exists at barriers, to make local changes to data (writes)
seen by all threads.

TA@@ tinyurl.com/tacc-2019-ihpcss 1 EXAS ADVANCED COMPUTING CENTER

C/C++
Parallel Regions

1 $#pragma omp parallel
2 |

3 //code block

4 work (..) ;

5 }

Line 1 Team of threads formed at beginning of parallel region
Lines 3-4 Each thread executes code block
No branching into or out of a parallel region
Line 5 All threads synchronize at end of parallel region (implied barrier)

How to make individualized work: use the thread number to divide work among threads.

TA@@ tinyurl.com/tacc-2019-ihpcss 1 EXAS ADVANCED COMPUTING CENTER

F90 |
Parallel Regions

1 'SOMP PARALLEL

2 'code block

3 call work(..)

4 'SOMP END PARALLEL

Line 1 Team of threads formed at beginning of parallel region.

Lines 2-3 Each thread executes code block and subroutine calls.
No branching into or out of a parallel region.

Line 4 All threads synchronize at end of parallel region (implied barrier).

How to make individualized work: use the thread number to divide work among threads.

TA@@ tinyurl.com/tacc-2019-ihpcss 1 EXAS ADVANCED COMPUTING CENTER

C/C++
Parallel Region & Number of Threads

* For example, to create a 4-thread Parallel region.

gcc —fopenmp code.c
export OMP NUM THREADS=4
a.out

double A[1000]; In C++ a local variables are

#pragma omp parallel private to th4e thread...

{

int ID‘E'omp_get_thread_num();
foo(ID, A);

}

* Each thread executes the code within the parallel region
e Thread numbers range from 0 to Nthreads-1
* Each thread calls foo(ID,A) with a different ID {=0,1,2,0r 3}

TA@@ tinyurl.com/tacc-2019-ihpcss 1 EXAS ADVANCED COMPUTING CENTER

FO0
Parallel Region & Number of Threads

* For example, to create a 4-thread Parallel region.

gcc —fopenmp code.c
export OMP NUM THREADS=4
a.out

real :: A(1000); integer :: ID But we need to make id

!Somp parallel Private to tt_(_e thread— more later

D€ omp get thread num()
call foo(ID, A)

!Somp end parallel

* Each thread executes the code within the parallel region
e Thread numbers range from 0 to Nthreads-1
* Each thread calls foo(ID, A) with a different ID {=0,1,2o0r 3}

TA@@ tinyurl.com/tacc-2019-ihpcss 1 EXAS ADVANCED COMPUTING CENTER

Parallel Region & Worksharing

Use OpenMP directives to specify Worksharing
inside a Parallel Region
S parallel Code block Each Thread Executes Unit of Work
50
o do / for Worksharing loop
9 sections Worksharing several blocks
2 ingle Worksharing (one thread) single block
5| end parallel >ING & &
“1Somp” and
“#pragma omp” Work-sharing Directive assigns threads to unit(s) of work.
not shown here. There is an implied barrier at the end of a worksharing construct!

TA@@ tinyurl.com/tacc-2019-ihpcss 1 EXAS ADVANCED COMPUTING CENTER

C/C++ |
Worksharing: Loop

#pragma omp parallel

é { Or
3 #pragma omp for ypragna omp parallel
g por (107 A<) for (i=0; i<N; i++)
6 a[i] = b[i] + c[i]; a[i] = b[i] + c[1];
7 }
8 }
Or
#pragma omp parallel for
, _ for (1=0; i<N; 1i++)
Linel Team of threads formed (parallel region). a[i] = b[i] + c[i];

Line 3-7 Loop iterations are split among threads.
implied barrier at }

Each loop iteration must be independent of other iterations.

TA@@ tinyurl.com/tacc-2019-ihpcss 1 EXAS ADVANCED COMPUTING CENTER

F90 |
Worksharing: Loop

1 |SOMP PARALLEL

2 1SOMP DO

3 do i=1,N Or

4 a(i) = b(i) + c(i) 'SOMP PARALLEL DO

5 enddo do i=1,N

6 !$OMP END PARALLEL a(i) = b(i) + c(i)
enddo

Line1l Team of threads formed (parallel region).

Line 3-4 Loop iterations are split among threads by DO construct.
Line5 ISOMP END DO is optional after the enddo.
Line5 Implied barrier at enddo.

Each loop iteration must be independent of other iterations.

TA@@ tinyurl.com/tacc-2019-ihpcss 1 EXAS ADVANCED COMPUTING CENTER

C/C++ Worksharing: Sections

#pragma omp section
{ work_2(); }

1 #pragma omp parallel sections
2

3 #pragma omp section

4 {

5 work 1();

6 } B

7

8

9

}

Line1 Team of threads formed (parallel region).
Line 3-8 Only One thread works on a section.
Line 9 End of parallel sections with an implied barrier.

Scales only to the number of sections.

TA@@ tinyurl.com/tacc-2019-ihpcss 1 EXAS ADVANCED COMPUTING CENTER

F90 Worksharing: Sections

1 !'Somp parallel sections

g Somp section

g call work 1()

g ISomp section

8 call work 2()

18 ISomp end parallel sections

Line1l Team of threads formed (parallel region).
Line 3-9 Only One thread works on a section.
Line 10 End of parallel sections with an implied barrier.

Scales only to the number of sections.

TA@@ tinyurl.com/tacc-2019-ihpcss 1 EXAS ADVANCED COMPUTING CENTER

Question

|SOMP PARALLEL DO
do i=1,N
a(i) = b(i) + c (1)
enddo
ISOMP END PARALLEL DO

OO WwWMNhR

1SOMP DO
do i=1,N
a(i) = b(i) +

enddo
1SOMP END DO__
1SOMP END PARALLEL

Joonbswpnp

'SOMP PARALLEL ! Create team of threads
! Assign iterations to threads

But, how does all this work
if we need other task parallel work here?

THE UNIVERSITY OF TEXAS AT AUSTIN

TA@@ tinyurl.com/tacc-2019-ihpcss 1 EXAS ADVANCED COMPUTING CENTER

OpenMP Parallel + Worksharing

Replicated

Work-Sharing : Work is divided among threads.

4 Threads

!SOMP PARALLEL
{code}
ISOMP END PARALLEL

code code code C?Pe

Replicated

!SOMP PARALLEL
1SOMP DO
do i = 1,N*4
{code}
end do
ISOMP END PARALLEL

DO

I=1,N I=N+1,2N |= 2 *4 N |=
code cod

3N+1,4N
gode

Work-Sharing

: Work blocks are executed by all threads.

'SOMP PARALLEL
{codel}

1SOMP DO
do i = 1,N*4

{code?2}

end do

1SOMP END DO
{code3}

ISOMP END PARALLEL

|

code1 code1 code1 code1

\ 4

I=1)N I=N#1,2N [|=2N+1,3N I=3N+1,4N
code2 code2 code2 code2

¥ barrier
coié3 coie3 coié3 code3

l | Combined

TAGCGSG

THE UNIVERSITY OF TEXAS AT AUSTIN

tinyurl.com/tacc-2019-ihpcss TEXAS ADVANCED COMPUTING CENTER

OpenMP Parallel + Worksharing (sections)

Replicated : Work blocks are executed by all threads.

Work-Sharing : Work is divided among threads.
1OMP PARALLEL

'OMP PARALLEL sections {code0}
IOMP section IOMP sections
4 Threads {codel} 'OMP section
IOMP section {codel}
'OMP PARALLEL {code?2} ..." +4 more
{code} IOMP section 'OMP END sections
'OMP END PARALLEL {code3} {codeb5}
'OMP section 'OMP END PARALLEL
{coded} l
'OMP END PARALLEL sections
l code0 code0 code0 code0
°°{e °°‘{e °°ie coge code1 code2 code3 coded codelcqde2 cofle3 cofled
, v ¥ barrier
l v coieS coieS coieS codeb
Replicated Work-Sharing l Combined

TA@@ tinyurl.com/tacc-2019-ihpcss 1 EXAS ADVANCED COMPUTING CENTER

OpenMP Parallel + Worksharing

4 Threads

#pragma PARALLEL
{code}

CO{G CO{G CO{G codge

l

Replicated

#pragma PARALLEL sections

{

#pragma section
{codel}

#pragma section
{code2}

code1 code?2 > >

Work-Sharing

#pragma PARALLEL

{
{codeO}

#pragma sections

{

#pragma section

{codel}
#pragma section
{code2}
}
{code3}
}
v
code0 code0 code0 code0
code1 code?2
¥ barrier
coié3 coié3 coié3 coié3
l Combined

THE UNIVERSITY OF TEXAS AT AUSTIN

TA@@ tinyurl.com/tacc-2019-ihpcss 1 EXAS ADVANCED COMPUTING CENTER

OpenMP Directive Scope

e construct —the lexical extent of executable directive

* region — all code encountered in a construct (construct + routines)
Fortran C/C++
program exl #include "omp.h"
use omp_lib void foo(int);
int main(){
== = ISomp parallel #pragma omp parallel
[g call foolomp_get_thread_num()) {
— © 2 ISomp end parallel foo(omp_get_thread_num());
o= T O
5 & end program ex1 }
O o (=
) E) subroutine foo(id) void foo(int id){
g 2 write(*, '(" thrd_id ",i0.3)"),id printf("thrd_id %0.3d\n",id);
é 2 end subroutine }

TA@@ tinyurl.com/tacc-2019-ihpcss 1 EXAS ADVANCED COMPUTING CENTER

OpenMP Clauses

Clauses control the behavior of an OpenMP directive:

Control Clause
Schedule for for/do worksharing schedule()
Data Scoping private(), shared(), default()
Initialization firstprivate(), copyin()
Parallelize a region or not if()
Number of threads to use num _threads()

TA@@ tinyurl.com/tacc-2019-ihpcss 1 EXAS ADVANCED COMPUTING CENTER

Schedule Clause for loop worksharing

E.G.| 'Somp do schedule (static)
Fort. do i=1,N
A(i)=B(i)+C (1)
enddo
Type Description
schedule (static) Each CPU receives one set of contiguous iterations
schedule (static, C) Iterations are divided round-robin fashion in chunks of size C iterations

schedule (dynamic, C) Iterations handed out in chunks of size C as CPUs become available

Each of the iterations are handed out in pieces of exponentially decreasing size,

schedule (guided, C} with C minimum number of iterations to dispatch each time

schedule (runtime) Schedule and chunk size taken from the OMP_SCHEDULE environment variable

schedule (auto) Let the runtime decide

Before Execution: | export OMP_ SCHEDULE="static,100”

E.G. | #pragma omp for schedule (runtime)
C for (i=0;i<N;i++) A[i]=B[i]+C[i];

TA@@ tinyurl.com/tacc-2019-ihpcss 1 EXAS ADVANCED COMPUTING CENTER

do i=1,128

Example - schedule(static,16), threads = 4

A(i1)=B(1)+C(1)

enddo

!Somp parallel do schedule(static,16)

A(i)=B(i)+C (1)
enddo
do i = 81,96
A(i)=B(i)+C (1)
enddo

thread0: do i=1,16 thread2: do i=33,48
A(i)=B(i)+C(1) A(i)=B (i) +C (i)
enddo enddo
do i=65,80 do i = 97,112
A(i)=B(i)+C (1) A(i)=B (i) +C (i)
enddo enddo
threadl: do i=17,32 thread3: do i=49,64

A(i)=B(i)+C (1)
enddo
do i = 113,128
A(i)=B(i)+C (1)
enddo

Round Robin”
Green= Round 1
Blue= Round 2

TAGCGSG

THE UNIVERSITY OF TEXAS AT AUSTIN

tinyurl.com/tacc-2019-ihpcss TEXAS ADVANCED COMPUTING CENTER

Comparison of Scheduling Options

static, c low round-robin C static

: Less than . decreasing dynami
Foieee) [@ medium 2eee unassigned/P ¢

[, C] = optional
default=1

26

TAGCGSG

THE UNIVERSITY OF TEXAS AT AUSTIN

tinyurl.com/tacc-2019-ihpcss TEXAS ADVANCED COMPUTING CENTER

Data Model — for parallel region

 Threads Execute on Cores/HW-threads

* In a parallel region, team threads are assigned
(tied) to implicit tasks to do work. Think of
tasks and threads as being synonymous.

e Tasks by “default” share memory declared in
scope before a parallel region.

e Data: shared or private
— Shared data: accessible by all tasks
— Private data: only accessible by the owner task

Private
Memory

TA@@ tinyurl.com/tacc-2019-ihpcss 1 EXAS ADVANCED COMPUTING CENTER

OpenMP Data Environment

* The following clauses control the data-sharing attributes of variables:

shared, private, reduction, firstprivate, lastprivate

Default variable scope (in parallel region):

1. Variables declared in main/program (C/F90) are shared by default
2. Global variables are shared by default

3. Automatic variables within function|subroutine, called from within a
parallel region, are private (reside on a stack private to each thread)

4. Loop index of worksharing loops are private.

5. Default scoping rule can be changed with default clause

TA@@ tinyurl.com/tacc-2019-ihpcss 1 EXAS ADVANCED COMPUTING CENTER

C/C++
Private & Shared Data

shared - Variable is shared (seen) by all threads

private - Each thread has a private instance (copy) of the variable
Defaults: The for-loop index is private, all other variables are shared

#pragma omp parallel for shared(a,b,c,n) private(i)
for (i=0; i<n; i++) { OK to be explicit;
: : : but not necessary.
al[i] = b[i] + c[i];

}

All threads have access to the same storage areas for a, b, ¢, and n, but each loop
has its own private copy of the loop index, i

TA@@ tinyurl.com/tacc-2019-ihpcss 1 EXAS ADVANCED COMPUTING CENTER

F90
Private & Shared Data

shared - Variable is shared (seen) by all threads
private - Each thread has a private instance (copy) of the variable

Defaults: The for-loop index is private, all other variables are shared

OK to be explicit;
!Somp parallel do shared(a,b,c,n) private(i) but not necessary.
do i = 1,n
a(i) = b(i) + c(i)
enddo

All threads have access to the same storage areas for a, b, ¢, and n, but each loop
has its own private copy of the loop index, i

TA@@ tinyurl.com/tacc-2019-ihpcss 1 EXAS ADVANCED COMPUTING CENTER

C/C++
Private Data Example

* In the following loop, each thread needs its own private copy of temp

If temp were shared, the result would be unpredictable since each
thread would be writing/reading to/from the same memory location
#pragma omp parallel for shared(a,b,c,n) private(temp,i)
for (i=0; i<n; i++){
temp = a[i] / b[i];
c[i] = temp + cos(temp);

* Alastprivate(temp) clause will copy the last loop(stack) value of temp to the (global)
temp storage when the parallel for is complete.

* Afirstprivate(temp) would copy the global temp value to each stack’s temp.

TA@@ tinyurl.com/tacc-2019-ihpcss 1 EXAS ADVANCED COMPUTING CENTER

FO0
Private Data Example

* In the following loop, each thread needs its own private copy of temp

If temp were shared, the result would be unpredictable since each
thread would be writing/reading to/from the same memory location

!Somp parallel for shared(a,b,c,n) private(temp,i)
do 1 =1,n

temp = a(i) / b(i)

c(i) = temp + cos(temp)
endo

* Alastprivate(temp) clause will copy the last loop(stack) value of temp to the (global)
temp storage when the parallel do is complete.

* Afirstprivate(temp) would copy the global temp value to each stack’s temp.

TA@@ tinyurl.com/tacc-2019-ihpcss 1 EXAS ADVANCED COMPUTING CENTER

C/C++ Reduction

* Reduction: Operation that combines multiple elements to form a single result
* Avariable that accumulates the result is called a reduction variable

* In parallel loops reduction operators and variables must be declared

float asum=0.0, aprod=1.0;

#pragma omp parallel for reduction(+:asum) reduction (*:aprod)
for (1i=0; i<n; i++) {
asum = asum + af[i];
aprod = aprod * a[i];

}

Each thread has a private asum and aprod, initialized to the operator’s identity

» After the loop execution, the master thread collects the private values of each
thread and finishes the (global) reduction

TA@@ tinyurl.com/tacc-2019-ihpcss 1 EXAS ADVANCED COMPUTING CENTER

FO0 Reduction

* Reduction: Operation that combines multiple elements to form a single result
* Avariable that accumulates the result is called a reduction variable

* In parallel loops reduction operators and variables must be declared

real asum=0.0, aprod=1.0

ISomp parallel do reduction(+:asum) reduction (*:aprod)
do i =1,n
asum = asum + a (i)
aprod = aprod * a(i)
enddo

print*, asum, aprod

Each thread has a private asum and aprod, initialized to the operator’s identity

* After the loop execution, the master thread collects the private values of each
thread and finishes the (global) reduction

TA@@ tinyurl.com/tacc-2019-ihpcss 1 EXAS ADVANCED COMPUTING CENTER

Synchronization

e Synchronization is used to impose order constraints
and to protect access to shared data

* High-Level Synchronization
— critical
— atomic
— barrier
— ordered (not explored here)
* Low-Level Synchronization

— locks (no explored here)

TA@@ tinyurl.com/tacc-2019-ihpcss 1 EXAS ADVANCED COMPUTING CENTER

C/C++

Synchronization: Critical/Atomic Directives

 When each thread must execute a section of code serially the region must be marked
with critical/end critical directives

* Use the #pragma omp atomic directive for simple cases: can use hardware support

Master Thread

#pragma omp parallel shared(sum,x,y)
{...

#pragma omp critical

update (x) ;
update (y) ;
sum=sum+1 ;

#pragma omp parallel shared (sum)

{...

#pragma omp atomic
sum=sum+1

Atomic has
read,
write,
update,

]

/ -

J

v

CRITICAL section or atomic operations

capture
clauses.

time
4 threads

TAGCGSG

THE UNIVERSITY OF TEXAS AT AUSTIN

tinyurl.com/tacc-2019-ihpcss TEXAS ADVANCED COMPUTING CENTER

FO0

Synchronization: Critical/Atomic Directives

* When each thread must execute a section of code serially the region must be
marked with critical/end critical directives

* Use the !S omp atomic directive for simple cases: can use hardware support

!Somp parallel shared(sum,x,y) !Somp parallel shared(sum)
Atomic has
'Somp critical !Somp atomic read,
update (x) ; sum=sum+1; write
update (y) ; c. ’
sum=sum+1; !Somp end parallel update,
'$Somp end critical capture
e clauses.
!Somp end parallel
time

]

E 4 threads

////” W J

~
Master Thread CRITICAL section or atomic operations

TA@@ tinyurl.com/tacc-2019-ihpcss 1 EXAS ADVANCED COMPUTING CENTER

Single Construct

e Single: Any single thread executes the construct. Since
Single is worksharing there is an implied barrier.

/ all threads see x=1 here/

X = 2
ISomp parallel private/fid)

id=omp get thread mum()
ISomp single
x =1
ISomp end sin
call foo(id,
ISomp end parallel

F90

foo (id,x) ;

C/C++

lel private (id)

read num() ;
single

TAGCGSG

THE UNIVERSITY OF TEXAS AT AUSTIN

tinyurl.com/tacc-2019-ihpcss TEXAS ADVANCED COMPUTING CENTER

Master Construct

 Master: Only the master executes the construct.
There is no implied barrier for this construct.

race condition
i

x=2

id=omp get t
!Somp mas

x =1
!Somp end mas
call foo(id,

!Somp parallel pri

ISomp end parallel

/ race condition
/

F90

x=2;

{

#pragma omp pa

foo(id,x) ;

C/C++

private (id)

TAGCGSG

THE UNIVERSITY OF TEXAS AT AUSTIN

tinyurl.com/tacc-2019-ihpcss TEXAS ADVANCED COMPUTING CENTER

C/C++
Synchronization: Barrier

e Barrier: Each thread waits until all threads arrive and a flush occurs

#pragma omp parallel shared (A, B, C) private (id)
{

id=omp get thread num();

A[1d] big calcl (id);

#pragma omp barrier

#pragma omp for

for (1=0;i<N;i++) {

Cli]=big calc3(i,A);

}< Implicit barrier
#pragma omp for nowait

for (i=0;1<N; i++) {
B[i]=big calc2(C, 1);

}< No implicit barrier due to nowait
A[id] = big calc4(id);

<

< Implicit barrier

}
TA@@ tinyurl.com/tacc-2019-ihpcss 1 EXAS ADVANCED COMPUTING CENTER

FO0

Synchronization: Barrier

Barrier: Each thread waits until all threads arrive and flush occurs

ISomp parallel shared (A, B, C) private(id)
id=omp get thread num()

A(1id) = big calcl(id)
!Somp barrier

!Somp do
do 1 = 1,N; C(1)=big calc3(i,A); enddo
1Somp end do < — Implicit barrier
!Somp do
do 1 = 1,N; B(i)=big calc2(C, 1),; enddo
'$omp end do nowait < — No implicit barrier due to nowait
A(id) = big calc4(id);
ISomp end parallel < Implicit barrier

TAGCGSG

THE UNIVERSITY OF TEXAS AT AUSTIN

tinyurl.com/tacc-2019-ihpcss TEXAS ADVANCED COMPUTING CENTER

C/C++

* When a work-sharing
region is exited, a barrier is
implied - all threads must
reach the barrier before
any can proceed.

e By using the NOWAIT
clause at the end of each
loop inside the parallel
region, an unnecessary
synchronization of threads
can be avoided.

NOWAIT

#pragma omp parallel

{
#pragma omp for nowait
{
for (i=0; i<n; i++)
{work (i) ;}
}
#pragma omp for schedule (guided, k)
{
for (i=0; i<m; i++)
{x[i]=y[i]+z[1];}
}
}

THE UNIVERSITY OF TEXAS AT AUSTIN

TA@@ tinyurl.com/tacc-2019-ihpcss 1 EXAS ADVANCED COMPUTING CENTER

FO0

 When a work-sharing
region is exited, a barrier is
implied - all threads must
reach the barrier before
any can proceed.

* By using the NOWAIT
clause at the end of each
loop inside the parallel
region, an unnecessary
synchronization of threads
can be avoided.

NOWAIT

1SOMP PARALLEL
1SOMP DO
do i=1,n
work (i)
enddo
1SOMP END DO NOWAIT
1SOMP DO schedule (guided, k)
do i=1,m
x(1)=y(1)+z (1)
enddo
1SOMP END DO
1SOMP END PARALLEL

TAGCGSG

THE UNIVERSITY OF TEXAS AT AUSTIN

tinyurl.com/tacc-2019-ihpcss TEXAS ADVANCED COMPUTING CENTER

Runtime Library Routines

function description
omp_get_num_threads() Number of threads in team, N
omp_get_thread _num() Thread ID {0 -> N-1}
omp_get_num_procs() Number of machine CPUs
omp_in_parallel() True if in parallel region & multiple thread executing
omp_set_num_threads(#) Set the number of threads for subsequent parallel regions

TA@@ tinyurl.com/tacc-2019-ihpcss 1 EXAS ADVANCED COMPUTING CENTER

Environment Variables

variable description
OMP_NUM_THREADS=integer Set to default no. of threads to use
OMP_SCHEDULE="“schedule-type[, chunk_size]” Sets “runtime” in loop schedule clause:

“...omp for/do schedule(runtime)”

_ Prints runtime environment at
il ISP Y= beginning of code execution.

[...] = optional

TA@@ tinyurl.com/tacc-2019-ihpcss 1 EXAS ADVANCED COMPUTING CENTER

real*8
double

OpenMP Wallclock Timers

omp get wtime, omp get wtick() (Fortran)
omp get wtime (), omp get wtick(); (C)

double t0, tl, dt, res;

t0 = omp get wtime() ;

<work>

tl = omp get wtime() ;

dt = t1 - tO0;

res = 1.0/omp get wtick() ;

printf (“Elapsed time = %$1£f\n”,dt);

printf (“clock resolution = $1f\n”, res);

TAGCGSG

THE UNIVERSITY OF TEXAS AT AUSTIN

tinyurl.com/tacc-2019-ihpcss TEXAS ADVANCED COMPUTING CENTER

Progression

Setup How to compile Basic 1 thread per ‘core’
OMP_NUM_THREADS
Parallel region Forking/joining threads Easy Minimize number of fork/join
Work-sharing/replicated work | What do the threads do? Work-sharing: easy | Optimize scheduling
‘omp do/for’ Replicated: medium | Remove implicit barriers
Avoiding race conditions = | —mmmmmmmme e Will take effort! | -~——————---——mmmee -
- Private variables Why/how to shelter data medium
- reduction Condensing a result from pieces medium
- Critical/atomic All threads, but one thread at a time harder Do not serialize everything
- Single/master One thread, and only one thread harder See ‘min. fork/join’
Advanced = =000 | e
- Hybrid MPI + OpenMP medium Interplay MPI/OpenMP
- Thread/memory pinning Affinity medium Utilize all cores
- SIMD Vectorization with OpenMP hard Utilize vector lanes
- Tasking Irregular problems hard

TA@@ tinyurl.com/tacc-2019-ihpcss 1 EXAS ADVANCED COMPUTING CENTER

OpenMP 3.0 and above

* First update to the spec since 2005

e Tasking: move beyond loops with generalized tasks and support complex and dynamic control flows
(dependences), priority and other features.

* Loop collapse: combine nested loops automatically to expose more concurrency

* Nested parallelism support: better definition of and control over nested parallel regions, and new
API routines to determine nesting structure

 OpenMP Affinity

* User-defined reductions

e Specify SIMD instructions for loop
e Offloading to devices (GPUs)

Provide features implementation must provide (requires) and conditional directives (metadirective)

TA@@ tinyurl.com/tacc-2019-ihpcss 1 EXAS ADVANCED COMPUTING CENTER

References
* http://www.openmp.org/

* Parallel Programming in OpenMP, by Chandra,Dagum, Kohr,
Maydan, McDonald, Menon

e Using OpenMP, by Chapman, Jost, Van der Pas (OpenMP2.5)

* Using OpenMP - The Next Step Affinity, Accelerators, Tasking
and SIMD, Rudd van der Pas, Eric Stotzer, and Christian

Terboven

http://www.nic.uoregon.edu/iwomp2005/iwomp2005 tutorial openmp rvdp.pdf

TA@@ tinyurl.com/tacc-2019-ihpcss 1 EXAS ADVANCED COMPUTING CENTER

Kent Milfeld
Lars Koesterke
milfeld |lars@tacc.utexas.edu

For more information:
www.tacc.utexas.edu

FOSNSW & ™

TA@@ tinyurl.com/tacc-2019-ihpcss 1 EXAS ADVANCED COMPUTING CENTER

Miscellaneous
and backups

TA@@ tinyurl.com/tacc-2019-ihpcss 1 EXAS ADVANCED COMPUTING CENTER

Default variable scoping
(Fortran example)

Program Main Subroutine Adder (a,m,col)
Integer, Parameter :: nmax=100 Common /vars/ y(nmax)
Integer :: n, j SAVE array sum
Real*8 :: x(n,n) Integer :: i, m
Common /vars/ y(nmax) Real*8 :: a(m,m)
n=nmax; y=0.0 do i=1,m
!SOMP Parallel do y (col)=y(col)+a(i,col)
do j=1,n end do
call Adder(x,n, j) array sum=array sum+y (col)
end do
End Subroutine Adder
End Program Main

TA@@ tinyurl.com/tacc-2019-ihpcss 1 EXAS ADVANCED COMPUTING CENTER

Default data scoping in Fortran (cont.)

Variable Scope Is use safe? Reason for scope

n shared yes declared outside parallel construct

X shared yes declared outside parallel construct

i private yes parallel loop index variable

a shared yes actual variable x is shared

array_sum shared no declared with SAVE attribute

TA@@ tinyurl.com/tacc-2019-ihpcss 1 EXAS ADVANCED COMPUTING CENTER

C/C++ Loop Collapse

* Allow collapsing of perfectly nested loops

* Will form a single loop and then parallelize it:

#pragma omp parallel do collapse(2)
for(1=0;i<n;i++){
for(j=0;j<n;j++){

TA@@ tinyurl.com/tacc-2019-ihpcss 1 EXAS ADVANCED COMPUTING CENTER

F30 Loop Collapse

* Allow collapsing of perfectly nested loops

* Will form a single loop and then parallelize it:

!Somp parallel do collapse(2)
do i=1,n
do j=1,n

TA@@ tinyurl.com/tacc-2019-ihpcss 1 EXAS ADVANCED COMPUTING CENTER

Loop Nesting
Nested Parallel Region

) Serial Serial
execution © o o
A @—— 4 threads
@—— onsocketO0 ?
xn c o
— o) >
s = S
o—o £
< @—— 4threads =
O Q@ —— onsocket1
Master Thread 2 =
S °]
gy

While OpenMP 3.0 supports nested parallelism, many
implementations may ignore the nesting by serializing the inner
parallel regions

TA@@ tinyurl.com/tacc-2019-ihpcss 1 EXAS ADVANCED COMPUTING CENTER

Parallel Regions & Modes

There are two OpenMP “modes”
e static mode

— Fixed number of threads --setin the OMP_NUM THREADS env.

Or the threads may be set by a function call (or
clause) inside the code:

— omp_set num threads runtime function
num_threads (#) clause

* dynamic mode:
— Number of threads can change under OS control from one parallel region
to another using:

Note: the user can only define the maximum number of threads, compiler can
use a smaller number

TA@@ THE UNIVERSITY OF TEXAS AT AUSTIN

tinyurl.com/tacc-2019-ihpcss TEXAS ADVANCED COMPUTING CENTER

