
tinyurl.com/tacc-2019-ihpcss	

PRESENTED BY:

Introduction	to	
OpenMP	Programming	

IHPCSS	
July	7-12,	2019		

1	

Kent	Milfeld	/	Lars	Koesterke	
milfeld@tacc.utexas.edu	
lars@tacc.utexas.edu	

Lecture and Lab slides available at: tinyurl.com/tacc-2019-ihpcss

tinyurl.com/tacc-2019-ihpcss	

Outline	

OpenMP	Directive	Review	–	The	Concepts	
	

•  Execution	Model:	Parallel	Fork-Join	
•  Directive	Syntax	
•  Memory	Model	
•  Using	OpenMP	Directives	
•  Worksharing	
•  Directive	Scope	
•  Clauses	
•  Thread	Scheduling	
•  Data	Model	/	Data	Environment	
•  Synchronization	
•  API	functions	/	Environment	Variables	

2	

tinyurl.com/tacc-2019-ihpcss	

OpenMP?	
•  OpenMP	stands	for	Open	Multi-Processing	
•  Three	primary	components:	

–  Directives	to	the	Compiler	within	code	(pragmas	in	C/C++,	comments	in	Fortran)	
–  	Runtime	Library	Routines	
–  	Environment	Variables	

•  http://www.openmp.org/	
–  OpenMP	5.0	Complete	Specifications	(Nov.	2018)	
–  OpenMP	4.5	Complete	Specifications	(Nov.	2015)	
–  OpenMP	Examples	4.5	(Nov.	2015)	
–  OpenMP	Summary	Card,	Reference	Guide	(C/C++/Fortran)	

3	

tinyurl.com/tacc-2019-ihpcss	

OpenMP	Constructs	
OpenMP	language	--	

“extensions”	to	base	language	

work	sharing	 data		
environment	 synchronization	

		
• 	distributes	work		
among	threads	
	

do,	for		
sections			
single		
directives	
	

• 	specifies	
variables	as		
shared	or	private	
	
shared	and		
private	
clauses	

• 	coordinates	
thread	execution	
	

critical		
atomic		
barrier		
directives	

parallel	

• 	creates	threads	
	
	
parallel	
	
directive	
	

runtime		
functions,	env.	

variables	

• 	Runtime	functions	
• 	Environment	Variables	

omp_set_num_threads()	
omp_get_thread_num()	
	
	

OMP_NUM_THREADS	
OMP_SCHEDULE	

	

Advanced	stuff	

Tasking	
SIMD	(vector)	
Locks	
Affinity	
Dependences	
Devices	(offload)	

4	10	Basic				Components	

tinyurl.com/tacc-2019-ihpcss	

•  Program	begins	as	a	single	process:	master	thread	executes	serially.	
•  At	a	parallel	directive	(construct)	a	team	of	threads	is	forked.	
•  At	end	of	parallel	region,	(team	of)	threads	synchronize	and	terminate	
(join)	but	master	continues.	

Execution	Model	

time	
Serial	

4	threads	

Parallel	
Directive	execution	

Master	Thread	 Team	of	Threads	

Serial	

6	threads	

Parallel	
Directive	 Serial	

5	

tinyurl.com/tacc-2019-ihpcss	

OpenMP	Directive	Scope	
•  OpenMP	directives	are	are	formed	with	comments/pragmas	in	the	source:	
											F90						:																		!$omp			...	
											C/C++		:				#pragma	omp			...								

6	

int main(){
 . . .
 #pragma omp parallel
 foo(...);

 #pragma omp parallel
 {
 foo(...)
 bar(...)
 }

}

	

C/C++ program main
...
!$omp parallel
 call foo(...)
!$omp end parallel

!$omp parallel

 call foo(...)
 call bar(...)
!$omp end parallel

end program
	

F

Applies	to	next	
statement	

Applies	to	next	
block	{...}	

Parallel	
Region	

Parallel	
Region	

tinyurl.com/tacc-2019-ihpcss	

OpenMP	Syntax	
•  Compiler	directive	syntax:	
					#pragma	omp	construct	[clause	[[,]clause]…] 															C	
																			!$omp	construct	[clause	[[,]clause]…]						 	F90	

	
•  Example	

7	

 Fortran
print*,”serial”	
	
!$omp		parallel	num_threads(4)	
				…	
	
!$omp	end	parallel	
	
print*,”serial”	

 C/C++
	printf(“serial\n”);	
	
	#pragma	omp	parallel	num_threads(4)	
	{		
						…	
	}	
	
	printf(“serial\n”);	
	

tinyurl.com/tacc-2019-ihpcss	

Memory	Model	and	Synchronization	
•  Every	thread	has	access	to	(shared)	memory.	

						When	multiple	threads	are	created	all		
							threads	share	the	same	address	space.		
	

•  Simultaneous	updates	to	shared	memory	can	create	a	race	
condition--	Causing	results	change	with	different	thread	scheduling.	

•  Use	mutual	exclusion	type	directives	to	avoid	race	conditions		-	but	
don’t	use	too	many	because	this	will	serialize	performance.	

•  Barriers	are	used	to	synchronize	threads.	

•  A	flush	exists	at	barriers,	to	make	local	changes	to	data	(writes)	
seen	by	all	threads.	 8	

tinyurl.com/tacc-2019-ihpcss	

Parallel	Regions	

 1 #pragma omp parallel
 2 {
 3 //code block
 4 work(…);
 5 }
	
Line			1 						Team	of	threads	formed	at	beginning	of	parallel	region	
Lines	3-4					Each	thread	executes	code	block		

	 	 	No	branching	into	or	out	of	a	parallel	region	
Line			5									All	threads	synchronize	at	end	of	parallel	region	(implied	barrier)	
	
How	to	make	individualized	work:	use	the	thread	number	to	divide	work	among	threads.	

	 9	

C/C++

tinyurl.com/tacc-2019-ihpcss	

Parallel Regions

 1 !$OMP PARALLEL
 2 !code block
 3 call work(…)
 4 !$OMP END PARALLEL
	
Line			1 						Team	of	threads	formed	at	beginning	of	parallel	region.	
Lines	2-3					Each	thread	executes	code	block	and	subroutine	calls.		

													No	branching	into	or	out	of	a	parallel	region.	
Line			4								All	threads	synchronize	at	end	of	parallel	region	(implied	barrier).	
	
How	to	make	individualized	work:	use	the	thread	number	to	divide	work	among	threads.	

10	

F90

tinyurl.com/tacc-2019-ihpcss	

Parallel	Region	&	Number	of	Threads	

•  Each	thread	executes	the	code	within	the	parallel	region	
•  Thread	numbers	range	from	0	to	Nthreads-1	
•  Each	thread	calls	foo(ID,A)		with	a	different	ID {=	0,1,2,or	3}	

double A[1000];

#pragma omp parallel

{

 int ID = omp_get_thread_num();

 foo(ID, A);

}

In	C++	a	local	variables	are		
private	to	the	thread…	

11	

C/C++

•  For	example,	to	create	a	4-thread	Parallel	region.	
gcc –fopenmp code.c
export OMP_NUM_THREADS=4
a.out

tinyurl.com/tacc-2019-ihpcss	

Parallel	Region	&	Number	of	Threads	
•  For	example,	to	create	a	4-thread	Parallel	region.	

real :: A(1000); integer :: ID

!$omp parallel

 ID = omp_get_thread_num()

 call foo(ID, A)

!$omp end parallel

													But	we	need	to	make	id	
													Private	to	the	thread–	more	later	

12	

F90

gcc –fopenmp code.c
export OMP_NUM_THREADS=4
a.out

•  Each	thread	executes	the	code	within	the	parallel	region	
•  Thread	numbers	range	from	0	to	Nthreads-1	
•  Each	thread	calls	foo(ID,	A)		with	a	different	ID {=	0,	1,	2	or	3}	

tinyurl.com/tacc-2019-ihpcss	

parallel

end parallel

do	/	for				 	Worksharing 	 	loop	

Use	OpenMP	directives	to	specify	Worksharing	
inside	a	Parallel	Region	

Parallel	Region	&	Worksharing	

13	

“!$omp”	and	
“#pragma	omp”	
not	shown	here.	

Work-sharing	Directive	assigns	threads	to	unit(s)	of	work.	
There	is	an	implied	barrier	at	the	end	of	a	worksharing	construct!	

Pa
ra
lle
l	R

eg
io
n	 Code	block 	Each	Thread	Executes 	Unit	of	Work	

	

sections	 	Worksharing 	 	several	blocks	
single 	 	Worksharing	(one	thread) 	single				block	

tinyurl.com/tacc-2019-ihpcss	

 1 #pragma omp parallel
 2 {
 3 #pragma omp for
 4 for (i=0; i<N; i++)
 5 {
 6 a[i] = b[i] + c[i];
 7 }
 8 }

Line	1					Team	of	threads	formed	(parallel	region).	

Line	3-7		Loop	iterations	are	split	among	threads.		
											implied	barrier	at	}	

	
Each	loop	iteration	must	be	independent	of	other	iterations.	

14	

C/C++
Worksharing: Loop

Or
#pragma omp parallel
#pragma omp for
for (i=0; i<N; i++)
 a[i] = b[i] + c[i];	

Or
#pragma omp parallel for
for (i=0; i<N; i++)
 a[i] = b[i] + c[i];	

tinyurl.com/tacc-2019-ihpcss	

Worksharing: Loop

 1 !$OMP PARALLEL
 2 !$OMP DO
 3 do i=1,N
 4 a(i) = b(i) + c(i)
 5 enddo
 6 !$OMP END PARALLEL

Line	1					Team	of	threads	formed	(parallel	region).	
Line	3-4		Loop	iterations	are	split	among	threads	by	DO	construct.	
Line	5						!$OMP	END	DO	is	optional	after	the	enddo.			
Line	5 				Implied	barrier	at	enddo.	
	
Each	loop	iteration	must	be	independent	of	other	iterations.	

15	

F90

Or
 !$OMP PARALLEL DO
 do i=1,N
 a(i) = b(i) + c(i)
 enddo

tinyurl.com/tacc-2019-ihpcss	

Worksharing:	Sections	

 1 #pragma omp parallel sections
 2 {
 3 #pragma omp section
 4 {
 5 work_1();
 6 }
 7 #pragma omp section
 8 { work_2(); }
 9 }

Line	1					Team	of	threads	formed	(parallel	region).	
Line	3-8		Only	One	thread	works	on	a	section.	
Line	9 					End	of	parallel	sections	with	an	implied	barrier.	
	
Scales	only	to	the	number	of	sections.	

16	

C/C++

tinyurl.com/tacc-2019-ihpcss	

Worksharing:	Sections	

 1 !$omp parallel sections
 2
 3 !$omp section
 4
 5 call work_1()
 6
 7 !$omp section
 8 call work_2()
 9
 10 !$omp end parallel sections

Line	1						Team	of	threads	formed	(parallel	region).	
Line	3-9			Only	One	thread	works	on	a	section.	
Line	10				End	of	parallel	sections	with	an	implied	barrier.	
	
Scales	only	to	the	number	of	sections.	

17	

F90

tinyurl.com/tacc-2019-ihpcss	

Question

 1 !$OMP PARALLEL DO
 2 do i=1,N
 3 a(i) = b(i) + c(i)
 4 enddo
 5 !$OMP END PARALLEL DO

 1 !$OMP PARALLEL ! Create team of threads
 2 !$OMP DO ! Assign iterations to threads
 3 do i=1,N
 4 a(i) = b(i) + c(i)
 5 enddo
 6 !$OMP END DO
 7 !$OMP END PARALLEL	
	 18	

But,		how	does	all	this	work	
if	we	need	other	task	parallel	work	here?	

tinyurl.com/tacc-2019-ihpcss	

	Replicated						:	Work	blocks	are	executed	by	all	threads.	
	Work-Sharing	:	Work	is	divided	among	threads.	

!$OMP PARALLEL
 {code}
!$OMP END PARALLEL

!$OMP PARALLEL
!$OMP DO
 do i = 1,N*4
 {code}
 end do
!$OMP END PARALLEL DO

!$OMP PARALLEL
 {code1}
!$OMP DO
 do i = 1,N*4
 {code2}
 end do
!$OMP END DO
 {code3}
!$OMP END PARALLEL

code code code code I=N+1,2N
 code

I=2N+1,3N
 code

I=3N+1,4N
 code

I=1,N
 code

code1 code1 code1 code1

code3 code3 code3 code3

Replicated Work-Sharing Combined

OpenMP	Parallel	+	Worksharing	

19	

4	Threads	

barrier	

I=N+1,2N
 code2

I=2N+1,3N
 code2

I=3N+1,4N
 code2

I=1,N
 code2

tinyurl.com/tacc-2019-ihpcss	

	Replicated						:	Work	blocks	are	executed	by	all	threads.	
	Work-Sharing	:	Work	is	divided	among	threads.	

!OMP PARALLEL
 {code}
!OMP END PARALLEL

!OMP PARALLEL sections
!OMP section
 {code1}
!OMP section
 {code2}
!OMP section
 {code3}
!OMP section
 {code4}
!OMP END PARALLEL sections

!OMP PARALLEL
 {code0}
!OMP sections
!OMP section
 {code1}
 ...! +4 more
!OMP END sections
 {code5}
!OMP END PARALLEL

code code code code

 code2

 code3

 code4

 code1

code0 code0 code0 code0

code5 code5 code5 code5

Replicated Work-Sharing Combined

OpenMP	Parallel	+	Worksharing	(sections)	

20	

4	Threads	

barrier	

 code2

 code3

 code4

 code1

tinyurl.com/tacc-2019-ihpcss	

#pragma PARALLEL
 {code}

#pragma PARALLEL sections
{
 #pragma section
 {code1}
 #pragma section
 {code2}
}

#pragma PARALLEL
{
 {code0}
 #pragma sections
 {
 #pragma section
 {code1}
 #pragma section
 {code2}
 }
 {code3}
}

code code code code

code0 code0 code0 code0

code3 code3 code3 code3

Replicated Work-Sharing Combined

OpenMP	Parallel	+	Worksharing	

21	

4	Threads	

code2 code1

code2 code1

barrier	

tinyurl.com/tacc-2019-ihpcss	

 Fortran
program	ex1	
use		omp_lib	
	
!$omp	parallel	
				call	foo(omp_get_thread_num())	
!$omp	end	parallel	
	
end	program	ex1	

		
subroutine	foo(id)	
		write(*,	'("	thrd_id	",i0.3)'),id	
end	subroutine

 C/C++
#include	"omp.h"	
void	foo(int);	
int	main(){	
			#pragma	omp	parallel	
			{	
							foo(omp_get_thread_num());		
			}	
}	
	
void	foo(int	id){	
		printf("thrd_id	%0.3d\n",id);	
}	

	

OpenMP	Directive	Scope	
•  construct			–	the	lexical	extent	of	executable	directive	
•  region 			–	all	code	encountered	in	a	construct	(construct	+	routines)	

22	

Pa
ra
lle
l	

Co
ns
tr
uc
t	

Pa
ra
lle
l	

Re
gi
on

	

Ru
nt
im

e	
Ex
te
ns
io
n	

tinyurl.com/tacc-2019-ihpcss	

OpenMP	Clauses	

Clauses	control	the	behavior	of	an	OpenMP	directive:	

23	

Control	 																		Clause	
Schedule	for	for/do	worksharing	 			schedule()	
Data	Scoping	 			private(),	shared(),	default()	
Initialization	 			firstprivate(),	copyin()	
Parallelize	a	region	or	not	 			if()	
Number	of	threads	to	use	 			num_threads()	

tinyurl.com/tacc-2019-ihpcss	

Schedule	Clause	for	loop	worksharing	

24	

Type	 Description	

schedule	(static)	 Each	CPU	receives	one	set	of	contiguous	iterations	

schedule	(static,	C)	 Iterations	are	divided	round-robin	fashion	in	chunks	of	size	C	iterations	

schedule	(dynamic,	C)	 Iterations	handed	out	in	chunks	of	size	C	as	CPUs	become	available	

schedule	(guided,				C)	 Each	of	the	iterations	are	handed	out	in	pieces	of	exponentially	decreasing	size,	
with	C	minimum	number	of	iterations	to	dispatch	each	time	

schedule	(runtime)	 Schedule	and	chunk	size	taken	from	the	OMP_SCHEDULE	environment	variable	

schedule	(auto)	 Let	the	runtime	decide	

!$omp do schedule(static)
 do i=1,N
 A(i)=B(i)+C(i)
 enddo

E.G.	
Fort.	

export OMP_SCHEDULE=”static,100”

E.G.	
			C	

Before	Execution:	

#pragma omp for schedule(runtime)
 for(i=0;i<N;i++) A[i]=B[i]+C[i];

tinyurl.com/tacc-2019-ihpcss	

Example	-	schedule(static,16),	threads	=	4	

thread0: do i=1,16
 A(i)=B(i)+C(i)
 enddo
 do i=65,80
 A(i)=B(i)+C(i)
 enddo

thread1: do i=17,32
 A(i)=B(i)+C(i)
 enddo
 do i = 81,96
 A(i)=B(i)+C(i)
 enddo

thread2: do i=33,48
 A(i)=B(i)+C(i)
 enddo
 do i = 97,112
 A(i)=B(i)+C(i)
 enddo

thread3: do i=49,64
 A(i)=B(i)+C(i)
 enddo
 do i = 113,128
 A(i)=B(i)+C(i)
 enddo

!$omp parallel do schedule(static,16)
 do i=1,128
 A(i)=B(i)+C(i)
 enddo

25	

Round	Robin”	
Green=	Round	1	
Blue=				Round	2	

tinyurl.com/tacc-2019-ihpcss	

Comparison	of	Scheduling	Options	

type compute	
overhead distribution chunk	size

static	
or	
dynami
c

static lowest partitioned N/P static

static,	c low round-robin C static

dynamic	[,	c] medium simple	
dynamic C dynami

c

guided			[,	c] Less	than	
medium guided decreasing	

unassigned/P
dynami
c

runtime varies runtime varies varies

26	
[,	C]	=	optional	
default	=	1	

tinyurl.com/tacc-2019-ihpcss	

Data	Model	–	for	parallel	region	

				Memory	(Data)	

Core	 Core	

Core	 Core	

27	

task	 task	

task	 task	

•  Threads	Execute	on	Cores/HW-threads	
•  In	a	parallel	region,	team	threads	are	assigned	

(tied)	to	implicit	tasks	to	do	work.	Think	of	
tasks	and	threads	as	being	synonymous.	

•  Tasks	by	“default”	share	memory	declared	in	
scope	before	a	parallel	region.	

•  Data:	shared	or	private	
–  Shared	data:										accessible	by	all	tasks	

SHARED	

Private	
Memory	

–  Private	data:	only	accessible	by	the	owner	task	

tinyurl.com/tacc-2019-ihpcss	

OpenMP	Data	Environment	
•  The	following	clauses	control	the	data-sharing	attributes	of	variables:	

Default	variable	scope	(in	parallel	region):	

1.  Variables	declared	in	main/program	(C/F90)	are	shared	by	default	
2.  Global	variables	are	shared	by	default	
3.  Automatic	variables	within	function|subroutine,	called	from	within	a	

parallel	region,	are	private	(reside	on	a	stack	private	to	each	thread)	
4.  Loop	index	of	worksharing	loops	are	private.	
5.  Default	scoping	rule	can	be	changed	with	default clause	

28	

			shared,	private,	reduction,				firstprivate,	lastprivate			

tinyurl.com/tacc-2019-ihpcss	

Private	&	Shared	Data	
shared	-		Variable	is	shared	(seen)	by	all	threads	
private	-		Each	thread	has	a	private	instance	(copy)	of	the	variable	
Defaults:	The	for-loop	index	is	private,	all	other	variables	are	shared		

#pragma omp parallel for shared(a,b,c,n) private(i)
 for (i=0; i<n; i++){
 a[i] = b[i] + c[i];
 }
All	threads	have	access	to	the	same	storage	areas	for	a,	b,	c,	and	n,	but	each	loop				

has	its	own	private	copy	of	the	loop	index,	i	
	
	
	

OK	to	be	explicit;	
but	not	necessary.	

29	

C/C++

tinyurl.com/tacc-2019-ihpcss	

Private	&	Shared	Data	
shared	-		Variable	is	shared	(seen)	by	all	threads	
private	-		Each	thread	has	a	private	instance	(copy)	of	the	variable	
	
Defaults:	The	for-loop	index	is	private,	all	other	variables	are	shared		

!$omp parallel do shared(a,b,c,n) private(i)
 do i = 1,n
 a(i) = b(i) + c(i)
 enddo

All	threads	have	access	to	the	same	storage	areas	for	a,	b,	c,	and	n,	but	each	loop				

has	its	own	private	copy	of	the	loop	index,	i	
	
	
	

OK	to	be	explicit;	
but	not	necessary.	

30	

F90

tinyurl.com/tacc-2019-ihpcss	

Private	Data	Example	
•  In	the	following	loop,	each	thread	needs	its	own	private	copy	of	temp		

If	temp	were	shared,	the	result	would	be	unpredictable	since	each	
thread	would	be	writing/reading	to/from	the	same	memory	location	

 #pragma omp parallel for shared(a,b,c,n) private(temp,i)
 for (i=0; i<n; i++){
 temp = a[i] / b[i];
 c[i] = temp + cos(temp);
 }

•  A	lastprivate(temp)	clause	will	copy	the	last	loop(stack)	value	of	temp	to	the	(global)	

temp	storage	when	the	parallel	for	is	complete.		

•  A	firstprivate(temp)	would	copy	the	global	temp	value	to	each	stack’s	temp.		
	

31	

C/C++

tinyurl.com/tacc-2019-ihpcss	

Private	Data	Example	
•  In	the	following	loop,	each	thread	needs	its	own	private	copy	of	temp		

If	temp	were	shared,	the	result	would	be	unpredictable	since	each	
thread	would	be	writing/reading	to/from	the	same	memory	location	

 !$omp parallel for shared(a,b,c,n) private(temp,i)
 do i = 1,n
 temp = a(i) / b(i)
 c(i) = temp + cos(temp)
 endo

•  A	lastprivate(temp)	clause	will	copy	the	last	loop(stack)	value	of	temp	to	the	(global)		

temp	storage	when	the	parallel	do	is	complete.		

•  A	firstprivate(temp)	would	copy	the	global	temp	value	to	each	stack’s	temp.		
	

32	

F90

tinyurl.com/tacc-2019-ihpcss	

Reduction	
•  Reduction:	Operation	that	combines	multiple	elements	to	form	a	single	result	

•  A	variable	that	accumulates	the	result	is	called	a	reduction	variable	

•  	In	parallel	loops	reduction	operators	and	variables	must	be	declared

float asum=0.0, aprod=1.0;

#pragma omp parallel for reduction(+:asum) reduction(*:aprod)
 for (i=0; i<n; i++){
 asum = asum + a[i];
 aprod = aprod * a[i];
 }

Each	thread	has	a	private	asum	and	aprod,	initialized	to	the	operator’s	identity	
•  After	the	loop	execution,	the	master	thread	collects	the	private	values	of	each	
thread	and	finishes	the	(global)	reduction	

33	

C/C++

tinyurl.com/tacc-2019-ihpcss	

Reduction	
•  Reduction:	Operation	that	combines	multiple	elements	to	form	a	single	result	

•  A	variable	that	accumulates	the	result	is	called	a	reduction	variable	

•  	In	parallel	loops	reduction	operators	and	variables	must	be	declared

 real asum=0.0, aprod=1.0

!$omp parallel do reduction(+:asum) reduction(*:aprod)
 do i = 1,n
 asum = asum + a(i)
 aprod = aprod * a(i)
 enddo
 print*, asum, aprod

Each	thread	has	a	private	asum	and	aprod,	initialized	to	the	operator’s	identity	
•  After	the	loop	execution,	the	master	thread	collects	the	private	values	of	each	
thread	and	finishes	the	(global)	reduction	

34	

F90

tinyurl.com/tacc-2019-ihpcss	

Synchronization	
•  Synchronization	is	used	to	impose	order	constraints	
and	to	protect	access	to	shared	data	

•  High-Level	Synchronization	
– critical	
– atomic	
– barrier	
– ordered	(not	explored	here)	

•  Low-Level	Synchronization	
–  locks	(no	explored	here)	

35	

tinyurl.com/tacc-2019-ihpcss	

Synchronization:	Critical/Atomic		Directives	
•  When	each	thread	must	execute	a	section	of	code	serially	the	region	must	be	marked	
with	critical/end	critical	directives	

•  Use	the	#pragma	omp		atomic	directive	for	simple	cases:	can	use	hardware	support	

#pragma omp parallel shared(sum,x,y)
{...
 #pragma omp critical

 update(x);
 update(y);
 sum=sum+1;
 }
....
}

Master	Thread	 CRITICAL	section	or	atomic	operations	

#pragma omp parallel shared(sum)
{...

 #pragma omp atomic
 sum=sum+1
...
}

time	

36	

C/C++

Atomic	has		
				read,		
				write,		
				update,		
				capture	
clauses.	

time	
4	threads	

tinyurl.com/tacc-2019-ihpcss	

Synchronization:	Critical/Atomic		Directives	
•  When	each	thread	must	execute	a	section	of	code	serially	the	region	must	be	
marked	with	critical/end	critical	directives	

•  Use	the	!$	omp		atomic	directive	for	simple	cases:	can	use	hardware	support	

!$omp parallel shared(sum,x,y)
 ...

 !$omp critical
 update(x);
 update(y);
 sum=sum+1;
 !$omp end critical
....
!$omp end parallel

Master	Thread	

!$omp parallel shared(sum)
...

 !$omp atomic
 sum=sum+1;
...
!$omp end parallel

37	

F90

Atomic	has		
				read,		
				write,		
				update,		
				capture	
clauses.	

Master	Thread	 CRITICAL	section	or	atomic	operations	

time	
4	threads	

tinyurl.com/tacc-2019-ihpcss	

Single	Construct	
•  Single:	Any	single	thread	executes	the	construct.	Since	
Single	is	worksharing	there	is	an	implied	barrier.	

38	

x = 2
!$omp parallel private(id)

 id=omp_get_thread_num()
 !$omp single
 x = 1
 !$omp end single
 call foo(id,x)
!$omp end parallel

x = 2;
#pragma omp parallel private(id)
{
 id=omp_get_thread_num();
 #pragma omp single
 x = 1;

 foo(id,x);
}

	

C/C++ F90

all	threads	see	x=1	here	

tinyurl.com/tacc-2019-ihpcss	

Master	Construct	
•  Master:	Only	the	master	executes	the	construct.	
There	is	no	implied	barrier	for	this	construct.		

39	

x=2
!$omp parallel private(id)
 id=omp_get_thread_num()
 !$omp master
 x = 1
 !$omp end master
 call foo(id,x)
!$omp end parallel

x=2;
#pragma omp parallel private(id)
{
 id=omp_get_thread_num();
 #pragma omp master
 x = 1;

 foo(id,x);
}

	

race	condition	 race	condition	

C/C++ F90

tinyurl.com/tacc-2019-ihpcss	

Synchronization:	Barrier	
•  Barrier:	Each	thread	waits	until	all	threads	arrive	and	a	flush	occurs	
	 #pragma omp parallel shared (A, B, C) private(id)

{
 id=omp_get_thread_num();
 A[id] = big_calc1(id);
 #pragma omp barrier
 #pragma omp for
 for(i=0;i<N;i++){
 C[i]=big_calc3(i,A);
 }
 #pragma omp for nowait
 for(i=0;i<N;i++){
 B[i]=big_calc2(C, i);
 }
 A[id] = big_calc4(id);
}

Implicit	barrier	

Implicit	barrier	

No	implicit	barrier	due	to	nowait	

40	

C/C++

tinyurl.com/tacc-2019-ihpcss	

Synchronization:	Barrier	
•  Barrier:	Each	thread	waits	until	all	threads	arrive	and	flush	occurs	
	 !$omp parallel shared (A, B, C) private(id)

 id=omp_get_thread_num()
 A(id) = big_calc1(id)

 !$omp barrier

 !$omp do
 do i = 1,N; C(i)=big_calc3(i,A); enddo

 !$omp end do

 !$omp do

 do i = 1,N; B(i)=big_calc2(C, i); enddo

 !$omp end do nowait
 A(id) = big_calc4(id);
!$omp end parallel

Implicit	barrier	

Implicit	barrier	

No	implicit	barrier	due	to	nowait	

41	

F90

tinyurl.com/tacc-2019-ihpcss	

NOWAIT	

•  When	a	work-sharing	
region	is	exited,	a	barrier	is	
implied	-	all	threads	must	
reach	the	barrier	before	
any	can	proceed.	

•  By	using	the	NOWAIT	
clause	at	the	end	of	each	
loop	inside	the	parallel	
region,	an	unnecessary	
synchronization	of	threads	
can	be	avoided.	

#pragma omp parallel
{
 #pragma omp for nowait
 {
 for (i=0; i<n; i++)
 {work(i);}
 }
 #pragma omp for schedule(guided,k)
 {
 for (i=0; i<m; i++)
 {x[i]=y[i]+z[i];}
 }
}

42	

C/C++

tinyurl.com/tacc-2019-ihpcss	

NOWAIT

•  When a work-sharing
region is exited, a barrier is
implied - all threads must
reach the barrier before
any can proceed.

•  By using the NOWAIT
clause at the end of each
loop inside the parallel
region, an unnecessary
synchronization of threads
can be avoided.

!$OMP PARALLEL
 !$OMP DO
 do i=1,n
 work(i)
 enddo
 !$OMP END DO NOWAIT
 !$OMP DO schedule(guided,k)
 do i=1,m
 x(i)=y(i)+z(i)
 enddo
 !$OMP END DO
!$OMP END PARALLEL

43	

F90

tinyurl.com/tacc-2019-ihpcss	

Runtime	Library	Routines	

function	 description	

		omp_get_num_threads()	 Number	of	threads	in	team,	N	

		omp_get_thread_num()	 Thread	ID		{0	->	N-1}	

		omp_get_num_procs()	 Number	of	machine	CPUs	

		omp_in_parallel()	 True	if	in	parallel	region	&	multiple	thread	executing	

		omp_set_num_threads(#)	 Set	the	number	of	threads	for	subsequent	parallel	regions	

44	

tinyurl.com/tacc-2019-ihpcss	

Environment	Variables	

variable	 description	
OMP_NUM_THREADS=integer	 Set	to	default	no.	of	threads	to	use	

OMP_SCHEDULE=“schedule-type[,	chunk_size]”	 Sets	”runtime”	in	loop	schedule	clause:			
“…omp	for/do	schedule(runtime)”	

OMP_DISPLAY_ENV=anyvalue	 Prints	runtime	environment	at	
beginning	of	code	execution.	

45	[…]	=	optional	

tinyurl.com/tacc-2019-ihpcss	

OpenMP	Wallclock	Timers	
real*8 :: omp_get_wtime, omp_get_wtick() (Fortran)
double omp_get_wtime(), omp_get_wtick(); (C)

double t0, t1, dt, res;
...
t0 = omp_get_wtime();
<work>
t1 = omp_get_wtime();
dt = t1 - t0;

res = 1.0/omp_get_wtick();
printf(“Elapsed time = %lf\n”,dt);
printf(“clock resolution = %lf\n”,res);
	 46	

tinyurl.com/tacc-2019-ihpcss	

47	

Concept	 What	to	learn	 Level	 Optimize	

Setup	 How	to	compile	
OMP_NUM_THREADS	

Basic	 1	thread	per	‘core’	

Parallel	region	 Forking/joining	threads	 Easy	 Minimize	number	of	fork/join	

Work-sharing/replicated	work	 What	do	the	threads	do?	
‘omp	do/for’	

Work-sharing:	easy	
Replicated:	medium	

Optimize	scheduling	
Remove	implicit	barriers	

Avoiding	race	conditions	 --	 Will	take	effort!	 ---------------------------------	

-	Private	variables	 Why/how	to	shelter	data	 medium	

-	reduction	 Condensing	a	result	from	pieces	 medium	

-	Critical/atomic	 All	threads,	but	one	thread	at	a	time	 harder	 Do	not	serialize	everything	

-	Single/master	 One	thread,	and	only	one	thread	 harder	 See	‘min.	fork/join’	

Advanced	 --	

-	Hybrid	 MPI	+	OpenMP	 medium	 Interplay	MPI/OpenMP	

-	Thread/memory	pinning	 Affinity	 medium	 Utilize	all	cores	

- 	SIMD	 Vectorization	with	OpenMP	 hard	 Utilize	vector	lanes	

- 	Tasking	 Irregular	problems	 hard	

Progression	

tinyurl.com/tacc-2019-ihpcss	

OpenMP	3.0	and	above	
•  First	update	to	the	spec	since	2005	

•  Tasking:	move	beyond	loops	with	generalized	tasks	and	support	complex	and	dynamic	control	flows	
(dependences),	priority	and	other	features.	

•  Loop	collapse:	combine	nested	loops	automatically	to	expose	more	concurrency	

•  Nested	parallelism	support:	better	definition	of	and	control	over	nested	parallel	regions,	and	new	
API	routines	to	determine	nesting	structure	

•  OpenMP	Affinity	

•  User-defined	reductions	

•  	Specify	SIMD	instructions	for	loop		

•  Offloading	to	devices	(GPUs)	

•  Provide	features	implementation	must	provide	(requires)	and	conditional	directives	(metadirective)	48	

tinyurl.com/tacc-2019-ihpcss	

References	
•  http://www.openmp.org/	
	

•  Parallel	Programming	in	OpenMP,	by	Chandra,Dagum,	Kohr,	
Maydan,	McDonald,	Menon	

•  Using	OpenMP,	by	Chapman,	Jost,	Van	der	Pas	(OpenMP2.5)	

•  Using	OpenMP	–	The	Next	Step		Affinity,	Accelerators,	Tasking	
and	SIMD,	Rudd	van	der	Pas,	Eric	Stotzer,	and	Christian	
Terboven	

•  http://www.nic.uoregon.edu/iwomp2005/iwomp2005_tutorial_openmp_rvdp.pdf	

	 49	

tinyurl.com/tacc-2019-ihpcss	

For	more	information:	
www.tacc.utexas.edu	

	

Kent	Milfeld	
Lars	Koesterke	

milfeld|lars@tacc.utexas.edu	
	
	
	
	

50	

tinyurl.com/tacc-2019-ihpcss	

Miscellaneous	
and	backups	

51	

tinyurl.com/tacc-2019-ihpcss	

Default variable scoping
(Fortran example)

Program Main

Integer, Parameter :: nmax=100

Integer :: n, j

Real*8 :: x(n,n)

Common /vars/ y(nmax)

...

n=nmax; y=0.0

!$OMP Parallel do

 do j=1,n

 call Adder(x,n,j)

 end do

...

End Program Main

Subroutine Adder(a,m,col)

Common /vars/ y(nmax)

SAVE array_sum

Integer :: i, m

Real*8 :: a(m,m)

do i=1,m

 y(col)=y(col)+a(i,col)

end do

array_sum=array_sum+y(col)

End Subroutine Adder

52	

tinyurl.com/tacc-2019-ihpcss	

Default data scoping in Fortran (cont.)
Variable Scope Is use safe? Reason for scope

n shared yes declared outside parallel construct

j private yes parallel loop index variable

x shared yes declared outside parallel construct

y shared yes common block

i private yes parallel loop index variable

m shared yes actual variable n is shared

a shared yes actual variable x is shared

col private yes actual variable j is private

array_sum shared no declared with SAVE attribute

53	

tinyurl.com/tacc-2019-ihpcss	

Loop	Collapse	
•  Allow	collapsing	of	perfectly	nested	loops	

•  Will	form	a	single	loop	and	then	parallelize	it:	

#pragma omp parallel do collapse(2)
for(i=0;i<n;i++){

for(j=0;j<n;j++){
.....

}
}

54	

C/C++

tinyurl.com/tacc-2019-ihpcss	

Loop	Collapse	
•  Allow	collapsing	of	perfectly	nested	loops	

•  Will	form	a	single	loop	and	then	parallelize	it:	

!$omp parallel do collapse(2)
do i=1,n

do j=1,n
.....

end do
end do

55	

F90

tinyurl.com/tacc-2019-ihpcss	

Loop	Nesting	

While	OpenMP	3.0	supports	nested	parallelism,	many	
implementations	may	ignore	the	nesting	by	serializing	the	inner	
parallel	regions	

time	

Serial	execution	

Master	Thread	

Serial	

Nested	Parallel	Region	

4	threads		
on	socket	0	

4	threads		
on	socket	1	

jo
in
	

jo
in
	

jo
in
	o
ut
er
	2
	

fo
rk
	

fo
rk
	

fo
rk
	

56	

tinyurl.com/tacc-2019-ihpcss	

Parallel	Regions	&	Modes	
There	are	two	OpenMP	“modes”	
•  static	mode	

–  Fixed	number	of	threads		--	set	in	the	OMP_NUM_THREADS		env.		
Or the threads may be set by a function call (or
clause) inside the code:
–  omp_set_num_threads runtime function
num_threads(#) clause	

•  dynamic	mode:	
–  Number	of	threads	can	change	under	OS	control	from	one	parallel	region	

to	another		using:	

Note:	the	user	can	only	define	the	maximum	number	of	threads,	compiler	can	
use	a	smaller	number	

	
57	

