
PRESENTED BY:

MPI Lab
IHPCSS
Parallel Programming: Classic Track
July 7-12, 2019

1

John Cazes
cazes@tacc.utexas.edu

Lecture and Lab slides available at: tinyurl.com/tacc-2019-ihpcss



Getting Started
Login to bridges.psc.edu
Untar the lab source code 

% tar -xvf ~jcazes/ihpcss_2019_mpi.tar
% cd ihpcss_2019_mpi

Part 1: Getting started with examples

Part 2: Transferring data in a 1-D decomposition 

Part 3: Broadcasting data



Running Interactively
If you would like to follow along using the examples during the lecture, you may 
start an interactive session on Bridges or Comet.

Bridges:
# Monday 
interact -p RM -N 1 –n 4 -t 4:00:00 –A ac560tp –R mpi
# Tuesday 
interact -p RM -N 1 –n 4 -t 4:00:00 –A ac560tp –R mpi2

Comet:
srun -p compute -N 1 --ntasks-per-node=16 -t 4:00:00 \
--wait=0 --export=all --pty /bin/bash 



Part 1: MPI Examples

The MPI examples in this directory are the examples covered in 
the slides.  There may be minor differences between the slides 
and these examples.  
Enter the examples directory

cd mpi_examples

To build all the examples:
make

To run interactively
mpirun ./<executable>   #Bridges
ibrun ./<executable>    #Comet



Part 1: MPI Examples

C Fortran Description
C_broadcast.c F_broadcast.f90 Broadcasts from one task to all
C_even_odd.c Uses MPI_Groups to create even/odd communicators
C_gather.c F_gather.f90 Creates a matrix on task 0 from distributed vectors
C_gatherv.c F_gatherv.f90 Creates a matrix in reverse order from distributed vectors
C_isend_irecv.c F_isend_irecv.f90 Communicates between 0 and 1 using non-blocking comms
C_master_worker.c F_probe.f90 Creates a intra-communicator for workers
C_probe.c F_scatter_reduce.f90 Probes incoming message to determine size



Part 2: Domain Decomposition

Solve 2-D partial differential equation (finite difference) – Stommel Ocean Model
- Represent x-y domain as 2-D Cartesian grid
- Solution Matrix=A(x,y)
- Initialize grid elements with guess.
- Iteratively update Solution Matrix (A) until converged.
- Each iteration uses “neighbor” elements to update A

A(I,j)

A(I,j+1)

A(I,j-1)

A(i-1,j) A(i+1,j) A’(I,j)
update

A

A’ holds updated elements of A



Domain Decomposition: Sharing Data Across Processors

Need to duplicate edge 
columns on neighbor 
processors & send updated
values after each iteration.
That is, create ghost columns
(gray) from real (patterned)
column on neighbor processor.

…

…

Decompose 2-D grid into column blocks across p processors (1-D decomposition)



Domain Decomposition

Matrix Layout with Ghost Cells

1 5 9 13

2 6 10 14

3 7 11 15

4 8 12 16

1                       n0 n+1

A (1,0)

#define A(i,j)  a( (i-1) + (j)*n ) 
double a[n*(n+2)];

real*8 :: A(n, 0:n+1)

A (1,n+1)

A (n,0) A (n,n+1)

ghosts ghosts

Redefine Array for easy ghost access

CFortran



Domain Decomposition

Exchange ghost cell data

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

1                       n0 n+1 1                       n0 n+1

destination

destination

source

source

NODE 0 NODE 1



Domain Decomposition – Ghost cell exchange

Fix the MPI_Sendrecv calls by filling in the missing data.

C_ghost_exchange.c
ierr=MPI_Sendrecv(

<send_buf>,<send_count>,<send_MPItype>,<destination>,<send_tag>, 
<recv_buf>,<recv_count>,<recv_MPItype>,<source     >,<recv_tag>, 
MPI_COMM_WORLD, &status); 

F_ghost_exchange.f90
call MPI_Sendrecv(  &

<send_buf>,<send_count>,<send_MPItype>,<destination>,<send_tag>,  &
<recv_buf>,<recv_count>,<recv_MPItype>,<source     >,<recv_tag>,  &
MPI_COMM_WORLD, MPI_STATUS_IGNORE, ierr)



Domain Decomposition – Ghost cell exchange

Compile:
make C_ghost_exchange #C
make F_ghost_exchange #Fortran

Run:
mpirun ./C_ghost_exchange #C
mpirun ./F_ghost_exchange #Fortran



Fill in the place holders to send the following scalars to all tasks
nx, ny, lx, ly, alpha, beta, my_gamma

C_bcast.c
ierr=MPI_BCAST(<buf>,<count>,<MPItype>,<src>,MPI_COMM_WORLD);
F_bcast.f90
call MPI_BCAST(<buf>,<count>,<MPItype>,<src>,MPI_COMM_WORLD,mpi_err)

A Ap0
p1
p2
p3

A
A
A

broadcast p0
p1
p2
p3

Part 3: Broadcast Data



As before, compile using  the command:
make C_bcast #C
make F_bcast #Fortran

Run:
mpirun C_bcast < stommel.in
mpirun F_bcast < stommel.in

A Ap0
p1
p2
p3

A
A
A

broadcast p0
p1
p2
p3

Part 3: Broadcast Data


