
PRESENTED BY:

MPI Programming
IHPCSS
Parallel Programming: Classic Track
July 7-12, 2019

1

John Cazes
cazes@tacc.utexas.edu

Lecture and Lab slides available at: tinyurl.com/tacc-2019-ihpcss

Outline
Advantages of Message Passing
Background on MPI
Basic Information
Point to Point Communication
Nonblocking Communication
Wildcards
Probing
Collective Communications
"V" Operations
Derived Datatypes
Communicators

Message Passing Interface – MPI

Allows the exchange of data between independent processes that reside
either on the same node or on different nodes of a cluster.
Universality : MPI is a standard that is supported on all multi-node HPC
platforms.
Expressivity : MPI has been found to be a useful and complete model in
which to express parallel algorithms.

Message Passing Interface – MPI
MPI - Message Passing Interface
• Library standard defined by committee of vendors,

implementers, and parallel programmers
• Used to create parallel programs based on message passing
• Available on most HPC systems with C and Fortran bindings
• Used to communicate between processes both on-node and

off-node

Background on MPI
MPI 1.0 – May 1994
• Point-to-Point communications
• Collective operations
• Communicator groups
• Datatypes
MPI 2.0 – July 1997(2.1 – September 2008)
• One-sided communications
• Parallel I/O
• Inter communicators
MPI 3.0 – September 2012
• Non-blocking collectives
• Improved one-sided communications
• Support for Fortran08 bindings

MPI Implementations
There are optimized versions supported by both vendors and
opensource efforts.
Base implementations
• MPICH https://www.mpich.org/

• Intel MPI https://software.intel.com/en-us/mpi-library
• MVAPICH2 http://mvapich.cse.ohio-state.edu/
• Cray MPI https://pubs.cray.com/content/S-2529/17.05/xctm-series-

programming-environment-user-guide-1705-s-2529/mpt
• OPENMPI https://www.open-mpi.org/

• Mellanox HPC-X http://www.mellanox.com/page/hpcx_overview

https://www.mpich.org/
https://software.intel.com/en-us/mpi-library
http://mvapich.cse.ohio-state.edu/
https://pubs.cray.com/content/S-2529/17.05/xctm-series-programming-environment-user-guide-1705-s-2529/mpt
https://www.open-mpi.org/
http://www.mellanox.com/page/hpcx_overview

Key Concepts of MPI
MPI is an Application Programming Interface (API) standard
• Not a stand alone compiler
• Not a language
• Used to exchange data between programs/processes both on-

node and off-node
Two models of programming
• SPMD – Single program/ multiple data
• MPMD – Multiple program / multiple data

MPI Include and Module Files
MPI libraries need header information to define constants and interfaces
From include files:
• C: #include <mpi.h>
• Fortran: include “mpif.h”
Or module files for Fortran:
• Fortran: use mpi
• Fortran: use mpi_f08 – supports Fortran08 bindings

– requires explicit typing of arguments
Compiler/build wrappers are usually provided, which point to the correct
path to the include files and libraries
• mpicc –show #Show actual compile command for C
• mpif90 –show #Show actual compile command for Fortran

Communicators
Communicators

A parameter for most MPI calls
A collection of processors working on some part of a parallel job
MPI_COMM_WORLD is defined in the MPI include file as all of the
processors in your job
Can create subsets of MPI_COMM_WORLD
Processors within a communicator are assigned numbers 0 to n-1

Data Types

Data types
When sending a message, it is given a data type
Predefined types correspond to "normal" types

MPI_REAL , MPI_FLOAT -Fortran and C real
MPI_DOUBLE PRECISION , MPI_DOUBLE - Fortran and C double
MPI_INTEGER and MPI_INT - Fortran and C integer

Can create user-defined types

Minimal MPI program
Every MPI program needs these…

C version
#include <mpi.h> /* MPI include file */
...
ierr=MPI_Init(&argc, &argv); /* Initialize MPI */
ierr=MPI_Comm_size(MPI_COMM_WORLD,&nPEs); /* Total tasks */
ierr=MPI_Comm_rank(MPI_COMM_WORLD,&iam); /* Taskid (rank) */
...
ierr=MPI_Finalize(); /* Finalize MPI */

In C MPI routines are functions and return an
error value

Minimal MPI program
Every MPI program needs these…

Fortran version
include 'mpif.h' ! MPI include file
…
call MPI_Init(ierr) ! Initialize MPI
call MPI_Comm_size(MPI_COMM_WORLD, nPEs, ierr) ! Total tasks
call MPI_Comm_rank(MPI_COMM_WORLD, iam, ierr) ! Taskid (rank)

...
call MPI_Finalize(ierr) ! Finalize MPI

In Fortran, MPI routines are subroutines, and
last parameter is an error value

Basic Communications in MPI
Data values are transferred from one processor to another

One process sends the data
Another receives the data

Blocking
Call does not return until the message is sent or received

Nonblocking
Call indicates a start of send or received, and another call is made to
determine if finished

The Six Basic MPI Calls
MPI is used to create parallel programs based on message passing
The same program is run on multiple processors
The 6 basic calls in MPI are:

1. call MPI_Init(ierr)
2. call MPI_Comm_rank(MPI_COMM_WORLD, myid, ierr)
3. call MPI_Comm_size(MPI_COMM_WORLD, numprocs, ierr)
4. call MPI_Send(buffer,count,MPI_TYPE,destination,

tag,MPI_COMM_WORLD,ierr)
5. call MPI_Recv(buffer,count,MPI_TYPE,source,tag,

MPI_COMM_WORLD,status,ierr)
6. call MPI_Finalize(ierr)

Point to Point Communications
Sending process

data is copied to the user buffer by the user
User calls one of the MPI send routines
System copies the data from the user buffer to the system buffer
System sends the data from the system buffer to the destination
processor

Receiving process
User calls one of the MPI receive subroutines
System receives the data from the source process, and copies it to the
system buffer
System copies the data from the system buffer to the user buffer
User uses the data in the user buffer

sendbuf

Call send routine

Now sendbuf can be reused

Process 0 : User mode Kernel mode

Copying data from sendbuf to
systembuf

Send data from sysbuf to
dest

data
Process 1 : User mode Kernel mode

Call receive routine
receive data from src to
systembuf

Copying data from sysbuf
to recvbuf

sysbuf

sysbuf

recvbuf

Now recvbuf contains
valid data

Blocking send and blocking receive
C:

if (myrank == 0) {
ierr = MPI_Send(…)

}
else if (myrank == 1) {

ierr = MPI_Recv(….)
}

Fortran:
if (myrank == 0) then

call MPI_Send(…)
elseif (myrank == 1) then

call MPI_Recv(….)
endif

Unidirectional Communication

Deadlock
• Can occur due to incorrect order of send and receive
• Can occur due to limited size of the system buffer

sendbuf

recvbuf

Rank 0 Rank 1

recvbuf

sendbuf

Bidirectional Communications

Deadlocked communication
Case 1 : both processes call recv first, then send

The above will always lead to deadlock

if (myrank == 0) then
call MPI_Recv(….)
call MPI_Send (…)

elseif (myrank == 1) then
call MPI_Recv(….)
call MPI_Send(….)

endif

if (myrank == 0){
MPI_Recv(….)
MPI_Send (…)

}
else if (myrank == 1) {
MPI_Recv(….)
MPI_Send(….)

}

Deadlocked communication
Case 2 : both processes call send first, then recv

This may not deadlock if the message size is small enough to fit in the receive buffer.
The size of the receive buffer may change with the total number of tasks or number of tasks per
node.
Moral : There may be error in coding that only shows up for larger task counts or problem sizes.

if (myrank == 0) then
call MPI_Send(….)
call MPI_Recv (…)

elseif (myrank == 1) then
call MPI_Send(….)
call MPI_Recv(….)

endif

if (myrank == 0){
MPI_Send(….)
MPI_Recv (…)

}
else if (myrank == 1) {
MPI_Send(….)
MPI_Recv(….)

}

Send-Receive
MPI_Sendrecv: Sends and receives data in the same operation

Call blocks until data is sent and received
Usually used in shift or exchange operations

C
Ierr = MPI_Sendrecv(

&sendbuffer, sendcount, sendtype, destination, sendtag,
&recvbuffer, recvcount, recvtype, source, recvtag,
communicator, &status, ierr)

Fortran
call MPI_Sendrecv(&

sendbuffer, sendcount, sendtype, destination, sendtag,
recvbuffer, recvcount, recvtype, source, recvtag,
communicator, status, ierr)

MPI_Sendrecv
sendbuffer data (address)
sendcount Length of send array (in elements, 1 for scalars)
sendtype Data Type: e.g. MPI_INT (C), MPI_INTEGER
destination Rank (task #) of destination in communicator group
sendtag Message identifier (arbitrary integer)
recvbuffer data (address)
recvcount Length of recv array (in elements, 1 for scalars)
recvtype Data Type: e.g. MPI_INT (C), MPI_INTEGER
source Rank (task #) of source in communicator group
sendtag Message identifier (arbitrary integer)
communicator Group of processors
Status Status of the receiving operation
ierr Error return (ONLY in Fortran)

Running Interactively
If you would like to follow along using the examples during the lecture, you may start an interactive
session on Bridges or Comet.

Bridges:
Monday
interact -p RM -N 1 –n 4 -t 4:00:00 –A ac560tp –R mpi
Tuesday
interact -p RM -N 1 –n 4 -t 4:00:00 –A ac560tp –R mpi2

Comet:
srun -p compute -N 1 --ntasks-per-node=16 -t 4:00:00 \
--wait=0 --export=all --pty /bin/bash

License
©The University of Texas at Austin, 2019

This work is licensed under the Creative Commons Attribution Non-Commercial
3.0 Unported License. To view a copy of this license, visit
http://creativecommons.org/licenses/by-nc/3.0/

When attributing this work, please use the following text: “Introduction to Many
Core Programming”, Texas Advanced Computing Center, 2018. Available under
a Creative Commons Attribution Non-Commercial 3.0 Unported License.

Intro | June 18th, 2019 | Cazes, Evans, Proctor 37

