T&@G “ PRACE

TEXAS ADVANCED COMPUTING CENTER

WWW.TACC.UTEXAS.EDU

Hybrid MPI/OpenMP

Programming N
IHPCSS PRESENTED BY: ~IK= N R ccs

July 7-12, 2019 Kent Milfeld

milfeld@tacc.utexas.edu

Lecture and Lab slides available at: tinyurl.com/tacc-2019-ihpcss ‘



What is Hybrid Computing?

Large HPC systems = Many Compute Nodes
Distributed-memory across nodes

Hierarchical system layout

Shared-memory on nodes
Compute Node O m— Node n

Hybrid: MPI for Process-Distributed +
OpenMP for Thread-Shared

Socket O Socket 1

Hybrid MPI+X programming

Process Thread
Distributed Shared
MPI OpenMP, HTO || HT1 HTO || HT1 HTO || HT1 HTO || HT1 Hardware
pthreads, etc. Threads
In a compute node, cores that are “local” to memory form a NUMA node.
Process-Shared: PGAS, SHMEM Use command “numactl —-H” to show available numa nodes




Pure MPI/OpenMP vs Hybrid

Which approach is the best for
System: 16 cores/node

your application?

Hybrid -
MPI + .1 MPLProcess, 16 Threads/Process
Pure MPI: 16 MPI Processes ________ openvp | W EEEEEN
High scalability and portability. : DDDDDDDD !
Scalability beyond 1 node. E DDDDDDDD :__!_!_!_.__!_!_!!_
Hard to ensure load balancing. o
-2 MPI Processes, 8 Threads/Process
I MPI task on core ! D....... !
OpEEEEN I
Pure OpenMP: 16 Threads _____________. ettt
Easv to WﬁltE:r . O CO8E8080A I _4MPI Processes, 4 Threads/Process
ower scalability. Low latency. i ........ !
Dynamic load balancing. e e e e i E===E===
Fine granularity. B \aster Thread e
Limited to 1 node. B Forked Threads
D Master thread of MPI task

. Forked Threads




Why MPI+OpenMP?

In a well balanced MPI application all cores
are busy all the time, so using threading can

give no immediate improvement. ? MPI+OpenMP

Typical performance curves

There are two main motivations for
using MPI+OpenMP

1. Reducing memory footprint
(Replicated data, buffers in MPI codes)

Performance

2. Improving performance when the
pure MPI scalability is running out
(In places where load balancing in MPl is

Pure MPI

difficult or when MPI process count is too
large for MPI to handle adequately) Number of cores




P rog ram Stru Ctu @ MPI processes act as “containers” for threads

MPI Program Hybrid MPI+OpenMP
MPI Init — o »MPI Init thread
- — Initializing MPI— | - -
MPI calls
MPI calls
OMP Parallel
MPI calls MPI calls
end Parallel
MPI calls

MPI calls

MPI Finalize «———  Finalizing MPI —>MPI_Finalize




Use MPT Init thread instead of MPT Init

C/C++ int required, provided;

MPI Init thread (NULL,NULL, required, &provided);

Fortran integer :: required, provided, ierr
MPI Init thread( required, provided, ierr)
Level of
Support MPI_THREAD_SINGLE < MPI_THREAD FUNNELED < MPI_THREAD_SERIALIZED < MPI_THREAD MULTIPLE

(required)

If MPI cannot support a requested level, it returns the highest level it can provide

Check MPI Init thread(NULL,NULL, MPI THREAD FUNNELED, &provided)
if (provided < MPI THREAD FUNNELED) MPI Abort (MPI_COMM WORLD, 1) ;

tinyurl.com/tacc-2019-ihpcss



Hybrid Programming Styles

tinyurl.com/tacc-2019-ihpcss

Model

Description

All MPI communication takes place in
the sequential part of the OpenMP
program

MPI communication takes place
through the same master thread

MPI calls can be made by any thread,
but only one at a time.

Multiple threads can make MPI calls
simultaneously

Required Support Level

MPI THREAD FUNNELED

MPI THREAD FUNNELED

MPI THREAD SERIALIZED

MPI THREAD MULTIPLE



Hybrid Style : Master-Only o

Fortran C OMP Parallel  Serial ~ OMP Parallel
» Time
| SOMP parallel fpragma omp parallel
work. .. -
work. .. </
!SOMP end parallel } * Simple to write and maintain
* Synchronized before/after MPI call
&/
'SOMP parallel * Other threads are idle during MPI call
s #ipragma omp parallel * Data locality is bad — data must go through
1$OMP end parallel { the cache where master thread is
' work. .. executing(“funneled”)
} * OpenMP parallel construct overhead can be

comparable to MPI message latency (us)

tinyurl.com/tacc-2019-ihpcss



Hybrid Style : Funneled

Fortran

C

1SOMP parallel
work...

ISOMP barrier
| SOMP master

call MPI send(...

|SOMP end master
ISOMP barrier

work...
1SOMP end parallel

#pragma omp parallel
{

work...

#pragma omp barrier
#pragma omp master

{

ierror=MPI_send(...);

}

#pragma omp barrier
work...

}

MPI_Send, Recv

Master
................ thread

< OMP Parallel ->

o0

* Relatively simple to write and
maintain

* Cost of thread synchronization
before/after MPI calls is less

expensive
o0

C—_—

* Data locality is still bad

* Might need load balancing between the
master thread and the other threads



Hybrid Style : Serialized

Fortran

C

1SOMP parallel
work...
ISOMP critical

call MPI Send(...)
ISOMP end critical

work. ..
1SOMP end parallel

#pragma omp parallel

{

work...

#pragma omp critical

{

ierror=MPI_Send(...);

}

work. ..

One MPI call

MPI_Send
atatime o

MPI_Recv

OMP Parallel region
» Time

p \
o0

N~—

* Improved data locality: threads send
own data, not funneled through Master
*  Works well with imbalanced work.

* May be harder to write and maintain

* Blocking on entry to a critical region may
result in idle threads

* Use tags to distinguish messages from/
to different threads with same MPI rank

10



Hybrid Style : Multiple

Fortran

C

MPI_Send MPI_Recv

1SOMP parallel
work...

call MPI Send(...

work...
1SOMP end parallel

#pragma omp parallel
{

work...

ierror=MPI Send(...

work...

OMP Parallel region

» Time

Good data locality

Inter- and intra-node communication
can be overlapped

Data preparation can be done on
multiple treads concurrently

Fewer concerns about synchronizing
treads correctly

Trickier to write and maintain
MPI implementations work
better or worse in this style.

11



Thread-Rank Communication

C/C++

int tid = omp get thread num() ;
- - - Use thread ID as tag

if (rank == 0) { to differentiate threads

MPI_Send(tid, MPI_INT, 1, |tid| MPI_COMM WORLD)
} else {

MPI Recv(buf, MPI INT, O,|tidy MPI COMM WORLD, Status)

printf (“Rank%d-thread %d: Received from %d\n”, rank, tid, buf)

tinyurl.com/tacc-2019-ihpcss



Overlapping Communication and Work

Master
thread

No MPI calls
Fortran C/C++ OMP Parallel region
> Time
1SOMP parallel private(tid) #pragma omp parallel private (tid)
{
tid = omp _get thread num() tid = omp _get thread num() ;
if (tid.eq.0) then if (tid == 0) {
call

else } else {

endif }
1SOMP end parallel }

tinyurl.com/tacc-2019-ihpcss



Setup and Run

e Use MPI compiler and openmp option to compile the code

mpif90 -gopenmp p.£90 -o hybrid a.out [ Fortran ]
mpicc -gopenmp pP.C -0 hybrid a.out [C]

* Set number of nodes and tasks per node.
idev -N 2 —-tpn 4 [ idev ]
#SBATCH -N 2 —tasks-per-node 4 [slurm]

e Set number of threads
export OMP NUM THREADS=S

e Set MPIl and OpenMP affinity (defaults often good)

export OMP PROC BIND=spread OMP PLACES=cores
export I MPI PIN=1
export I MPI PIN DOMAIN=auto:compact

ibrun hybrid a.out # 2 nodes, 4 tasks/node, 8 threads/task

14




Set Affinity

Without affinity threads can switch from one core to another, loosing data locality.

 Cache Thrashing may occur
 Local data may become REMOTE after the switch

It is difficult for the runtime libraries to optimize affinity settings,
especially for hybrid codes. Set affinity! Some common case work well, though.

tinyurl.com/tacc-2019-ihpcss



MPI Process / Thread Placement

Where does the system put MPI Processes and OMP Threads?

1. An MPI mask for each MPI process is created

2. Using the MPI mask for its rank, at the beginning of each parallel region
the thread runtime creates a new mask for each thread MPI rank.

Rank0 HEEEEEEE Rankl BDEEEEEE MPIMASKS

0 thrd 0 HENEEEEE 1 thrdoHNERNEEN
0 thrd 1 HEBEEEEE 1 thrdl BNNENENE Thread MASKS
0 thrd 2 AEEEEEE ! thrd2 EREREEES rea

othd 3ANEEEEEE 1 thd3ENNERERE

TACC :
pCsS




Intel MPI Affinity

Syntax: I MPI PIN DOMAIN=size:layout

Default: I MPI PIN DOMAIN=auto:compact
e.g.: I MPI PIN DOMAIN=4:compact

auto : domain size = #logical processors/#tasks
compact : domain members are ordered close
spread: domain members are spread out

pCsS

mpirun -np 4 a.out.

Rank O Rank 1 Rank 2 Rank 3

'cpuo | lcpu2 l|lcpua | lcpus || |lcput | Icpus |licpus | |cpuz |
icpus | [cpuiol|cpuazl [cpuaal | Llcpus | [cpuiilfcpuisl [cpuis)

export |_MPI_PIN_DOMAIN=2:compact
mpirun -np 4 a.out

Rank O Rank 1 Rank 2 Rank 3

CPU1 CPU3 CPU5 CPU7
CPUS CPU11 CPU13 CPU15

Ref: https://software.intel.com/en-us/mpi-developer-reference-linux-process-pinning
https://software.intel.com/en-us/mpi-developer-reference-linux-interoperability-with-openmp-api

17



Setting Up Thread Affinity

 Multiple ways of doing this from the environment
= |ntel KMP_* environmental variables *

= OpenMP environmental variables
e OpenMP is more portable

e OpenMP uses two variables:
=  PROC_BIND policy : OMP_PROC_BIND=close | spread

=  PLACES list* | abstract set: OMP_PLACES=threads | cores | sockets

*Doesn’t work for hybrid codes. Not able to
assign different values for different MPI
processes. Set OMP_PLACES=a<bstract_set>
and/or OMP_PROC_BIN=<policy>

Refl: https://software.intel.com/en-us/cpp-compiler-developer-guide-and-reference-thread-affinity-interface-linux-and-windows#KMP_AFFINITY_ENVIRONMENT_VARIABLE

18



Checking MPI Process Binding

Use the following to get Intel MPI to report process bindings:
export I MPI DEBUG=4

As part of your standard output you will see something like:

[0] MPI startup(): Rank Pid Node name Pin cpu
[0] MPI startup(): O 105228 testl {0,1,2,3,4,5, .. 31, ..
[0] MPI startup(): 1 105229 testl {32,33,34,35, .. 63, ..

tinyurl.com/tacc-2019-ihpcss



Checking Thread Binding with Amask

 Thisis a tool developed by Kent Milfeld at TACC to look at large sets of processor bindings
(like you see in KNL)

e Available at https://github.com/TACC/amask
* On TACC Systems:

Smodule load amask

* Execute one of the stand-alone executables, , or
in an OpenMP, MPI or hybrid environment, respectively, to obtain the expected affinity mask
for each process/thread for your program in the same environment.

* Refer the user guide at STACC_AMASK DOC

tinyurl.com/tacc-2019-ihpcss



Amask

The default affinity Rank=0

export OMP NUM THREADS=
ibrun -np amask hybrid

Rank=0 floating among 0-33 cores (not shown)

The 4 threads are on processors 0, 1, 2, 3,
i.e.

Rank=1 floating amoung 34-68 cores  Rank=1

The 4 threads are on processors 30+4, 5, 6, 7,
i.e.

tinyurl.com/tacc-2019-ihpcss

___rank
0000

0000

0000

0000

0001

0001

0001

0001

0001

0002

0003

0000

0001

0002

0003

21



Amask

Close

export OMP_ PROC BIND=
export OMP_NUM THREADS=
ibrun -np amask hybrid

Rank=0 floating among 0-33 cores
The 4 threads are on processors

0, 0+68, 0+68*2, 0+68*3,

i.e.

Rank=1 floating amoung 34-68 cores
The 4 threads are on processors

34, 34+68, 34+68*2, 34+68*3,
i.e.

tinyurl.com/tacc-2019-ihpcss

Rank=0

Rank=1

_—_—

rank
0000

0000

0000

0000

0001

0001

0001

0001

0000

0001

0002

0003

22



Amask

Spread

export OMP_PROC BIND=
export OMP NUM THREADS=
ibrun -np amask hybrid

Rank=0 floating among 0-33 cores
The 4 threads are on processors

0, 8+68*2, 10+7, 20+5+68*2,

i.e.

Rank=1 floating amoung 34-68 cores
The 4 threads are on processors

30+4, 40+2+68*2, 50+1, 50+9+68*2,
.

tinyurl.com/tacc-2019-ihpcss

Rank=0

Rank=1

rank thrd | 0 | 10 | 20 | 30 | 40 | 50 | 60

0000

0000

0000

0000

0001

0001

0001

0001

0000

0001

0002

0003

0000

0001

0002

0003

0

23



rank thrd | 0 | 10 | 20 | 30 | 40 | 50 | 60

Amask o o
O e ————————————————————
0 ___________________________________________________________________
Spread, cores 0= === mmmm oo oo oo oo s oo oo oo oo oS oo o s oo oo oo
0000 0001 8
export OMP PROC BIND= . T T T T
e B e
export OMP_ PLACES= 0000 0002 .
export OMP_NUM THREADS=4 [ = —----mommoooooee R e e e
. [y 2 ——
ibrun -np amask hybrid |  _________________ e
0000 0003 5
e e o o o o o i —— —— 5 __________________________________________
Rank=0 floating among 0-33 cores L JONIY X s ¥'aF ~ X ) S
e R et e T
0001 0000 4
The 4 threads are on processors | =mmmmmmmmmmmmmmmmmmemoooeoooo : ---------------------------------
0, 8+68*2, 10+7, 20+5+68*2, | o flm e e e
i e 0001 0001 2
e e e U gy
Rank=1| = ======—=——————mmmmm e 2-— e
Rank=1 floating amoung 34-68 cores 000 0002 S M e
___________________________________________________ [
___________________________________________________ [
The 4 threads are on processors | e lommmmmmmmmmmm -
30+4, 40+2+68*2, 50+1, 50+9+68*2, L O A T R
i.e. N S

24
tinyurl.com/tacc-2019-ihpcss



Summary

Use hybrid MPI+OpenMP when you want to (1) reduce memory footprint and/or (2)
Improve performance when the pure MPI scalability is running out (3) fine tune imbalances

Levels of MPI thread support: MPI_ THREAD SINGLE < MPI_THREAD FUNNELED <
MPI_THREAD_SERIALIZED < MPI_THREAD_MULTIPLE

Four hybrid styles: master-only, funneled, serialized, multiple

Process and thread affinity are important to the performance of hybrid execution on multi-
and many-core architectures

The general rule for setting the affinity is to populate the processors evenly with threads, to
minimize the resource contention, and to maximize the hardware utilization.

Default setting on Stampede2 is optimal for most cases. You should still fine tune for your
applications if needed. Always check out what the default setting are doing with your
application threads/processes.

tinyurl.com/tacc-2019-ihpcss



