
tinyurl.com/tacc-2019-ihpcss	

Tasking
Review Worksharing and Limitations
Basic Task Syntax and Operations
Task Synchronization
Running Tasks in Parallel
Data-sharing and firstprivate Default for Tasks
Common Use Cases for Tasks
Task Dependences
Taskloop

1

tinyurl.com/tacc-2019-ihpcss	

Worksharing
•  After	forking	a	TEAM	OF	THREADS	does	work	
•  LOOP	ITERATION	PARTITIONING	(chunks	of	independent	work)	

•  DATA	ENVIRONMENT	altered	by	clauses	&	implicits	(e.g.	private).		

•  IMPLIED	BARRIER	forces	threads	to	wait	at	end.	

2

omp	parallel	
{	
	
	
}	

omp	parallel	
{	
				<Worksharing		
							Loops>	
}	 =	chunk	of	

			iterations	

Lo
op

	

tinyurl.com/tacc-2019-ihpcss	

Worksharing Limitation

• Requires	Loop	Count.		
• Dynamic	Scheduling–	Only	FIFO	queue.	

• Worksharing	is	for	“data	parallel”.	
Tasking											is	for	“task	parallel”.	

3

tinyurl.com/tacc-2019-ihpcss	

Learning Objective
Review Worksharing and Limitations
Basic Task: Syntax and Operations
Task Synchronization
Running Tasks in Parallel
Data-sharing and firstprivate Default for Tasks
Common Use Cases for Tasks
Task Dependences
Taskloop

4

--	Tasking	--	

tinyurl.com/tacc-2019-ihpcss	

Tasking
•  After	forking	a	TEAM	OF	THREADS	does	work	
•  ONE	THREAD	OF	TEAM	GENERATES	TASKS	of	independent	work,	others	
execute	the	task.	

•  DATA	ENVIRONMENT	altered	by	clauses	&	implicits	(e.g.	firstprivate).		

•  EXPLICIT	WAIT	required	for	synchronization.	

5

omp	parallel	
{	
	
	
}	

omp	parallel	
{	
				omp	single	
				<Loop	Generates		
							TASKS>	
}	 =	chunk	of	

			iterations	

Lo
op

	

tinyurl.com/tacc-2019-ihpcss	

Generating A task
task		directive	forms	a	task	from	a	block	of	code.	

•  A	task	can	be	executed	immediately	or	later	(it	is “deferrable”). 	
•  Deferred	tasks	are	queued.	

6

 C/C++
#pragma omp task
 foo(j);

#pragma omp task
{
 for(i=0;i<n;i++){…};
}

 F90
!$omp task
 foo(j)
!$omp end task

!$omp task
 do i = 1,n; … ;enddo
!$omp end task

	
These	Tasks		
do		
Independent		
Work.	
	

//	Master	Thread	 !!	Master	Thread	

(in	a	serial	region)	

tinyurl.com/tacc-2019-ihpcss	

Deferred Task (usual case)

Deferred task

7

Generating		thread	
encounters		task	directive	

work	block	
or	function	

generated	
task	

queued	as	
deferred	task	

This	thread	
or	another	thread	can		
execute	the	queued	task	
(at	a	thread	scheduling	point,	
includes	barriers)	

These	are	scheduling	points,	
at	generation	and	completion.	

Generating	
thread	continues	

tinyurl.com/tacc-2019-ihpcss	

Immediate Task

Immediate task

8

Generating	thread	
executes	task	

generated	
task	

Generating	thread	
continues	executing	
after	task	(region)	

Generating		thread	
encounters		task	directive	

work	block	
or	function	

tinyurl.com/tacc-2019-ihpcss	

Learning Objective
Review Worksharing and Limitations
Basic Task: Syntax and Operations
Task Synchronization
Running Tasks in Parallel
Data-sharing and firstprivate Default for Tasks
Common Use Cases for Tasks
Task Dependences
Taskloop

9

--	Tasking	--	

tinyurl.com/tacc-2019-ihpcss	

Synchronizing tasks
Use	taskwait	construct	to	wait	for	completion	of	generator’s	child	tasks.	

10

 C/C++
#pragma omp task
{ foo(j); }

#pragma omp task
{ for(i=0;i<n;i++){…}; }

#pragma omp taskwait

 F90
!$omp task
 call foo(j)
!$omp end task

!$omp task
 do i = 1,n; … ;enddo
!$omp end task
!$omp taskwait

tinyurl.com/tacc-2019-ihpcss	

Synchronizing tasks
Use	taskgroup	construct	to	wait	for	all	child	and	descendants.		

11

#pragma taskgroup
{
 #pragma omp task
 foo(j);

 #pragma omp task
 { for(i=0;i<n;i++)
 #pragma omp task
 foo(i);
 }
}

!omp taskgroup
 !$omp task
 call foo(j)
 !$omp end task

 !$omp task
 do i = 1,n
 !$omp task
 call foo(i);
 !$omp end task
 enddo
 !$omp end task
!$omp end taskgroup

Nested	
Tasks	

F90 C/C++

tinyurl.com/tacc-2019-ihpcss	

Tasking
Review Worksharing and Limitations
Basic Task: Syntax and Operations
Task Synchronization
Running Tasks in Parallel
Data-sharing and firstprivate Default for Tasks
Common Use Cases for Tasks
Task Dependences
Taskloop

12

tinyurl.com/tacc-2019-ihpcss	

Generating Concurrent Tasks—in a parallel region
First,	create	a	team	of	threads,	to	work	on	tasks.	
Use	a	single	thread	to	generate	tasks.	

13

 C/C++
#pragma omp parallel num_threads(4)
{
 #pragma omp single
 {
 //generate multiple tasks

 }
}

 F90
!$omp parallel num_threads(4)

 !$omp single

 !generate multiple tasks

 !omp end single
!$omp end parallel

Generate	multiple	tasks:		with	loop	(while/do/for)	or	recursion		

tinyurl.com/tacc-2019-ihpcss	

Tasks in parallel region
Threads	of	Paralle	Team	will	dequeue	&	execute	tasks	

Shared	variables	of	parallel	region	are	also	shared	by	tasks	

Tasks		obey	explicit	and	implicit	barriers,	also	taskwait	&	taskgroup	

14

generating	
thread	

omp	parallel	num_threads(4)		
omp	single	

queue	4	iterations	

0	 1	 2	 3	

tinyurl.com/tacc-2019-ihpcss	

Tasking
Review Worksharing and Limitations
Basic Task: Syntax and Operations
Task Synchronization
Running Tasks in Parallel
Data-sharing and firstprivate Default for Tasks
Common Use Cases for Tasks
Task Dependences
Taskloop

15

tinyurl.com/tacc-2019-ihpcss	

Tasks: Basic Data-sharing Attributes
•  If	the	task	generating	construct	is	in	a	parallel	region	any	
shared	variables	remain	shared.	

•  for/do	index	variables	of	a	worksharing	loop	are	private	
(see	spec.)	

•  private	variables	in	an	enclosing	construct	become	
firstprivate	for	the	task.		

16

The	Point:		The	index	passed	to	a	task	needs	to	be	firstprivate.	

tinyurl.com/tacc-2019-ihpcss	

Deferred Task

17

Basic	Concept:	
The	argument	value	at		generation	time	
is	needed–	not	later	when	it	is	run.	

Generating		thread	
	encounters	task	directive	

work	block	
or	function	

generated	
task	

queued	as	
deferred	task	

Generating	
thread	continues	

In	a	parallel	region	if	j	is	shared,	it	needs	to	be	declared	firstprivate.	

#pragma omp task
 foo(j);

j++;

!$omp task
 foo(j)
!$omp end task

j = j+1

firstprivate(j) firstprivate(j)

loop	loop	

tinyurl.com/tacc-2019-ihpcss	

Scheduling Optimization
For	a	small	number	of	threads	and	tasks,	and	a	large	diversity	in	task	work—an	
imbalance	will	occur.	Even	with	moderate	diversity	and	large	thread	and	task	
counts,	an	imbalance	my	still	be	present.	

			
The	priority	clause	is	a	user-defined	way	to	solve	
imbalance.		(Larger # = higher priority.)

18

	for	(i=N-1;i<0;	i++)	{	
	

									#pragma	omp	task	priority(i+1)	
									compute_array(array[i],	N);	
	

	}

	do	i=N,1	
						!$omp	task	priority(i)	
						call	compute_array(matrix(:,	i),	N)	
						!$omp	end	task	
	enddo

tinyurl.com/tacc-2019-ihpcss	

Tasking
Review Worksharing and Limitations
Basic Task: Syntax and Operations
Task Synchronization
Running Tasks in Parallel
Data-sharing and firstprivate Default for Tasks
Common Use Cases for Tasks
Task Dependences
Taskloop

19

tinyurl.com/tacc-2019-ihpcss	

What is Tasking for?

Irregular Computing of independent work chunks:

While loop, execute independent iterations in parallel
Follow pointers in list until a NULL pointer is reached,
 performing independent work for each pointer position.

Note: the pointer chase is inherently serial but if work at each pointer position is
independent, then work can be executed in parallel.

Follow nodes in tree graph & perform independent work at nodes
Ordered executions that have task (work) with dependences

20

tinyurl.com/tacc-2019-ihpcss	

While loop

firstprivate clause required since cntr is shared and value must be captured for work.

 int cntr = 100;
#pragma omp parallel
#pragma omp single

while(cntr>0){

 #pragma omp task firstprivate(cntr)
 {
 printf(“cntr=%d\n”,cntr);
 work_long_time(cntr);
 }
 cntr--;
}

 integer cntr = 100
!$omp parallel
!$omp single

do while(cntr>0)

 !$omp task firstprivate(cntr)
 print*,”cntr= “,cntr
 call work_long_time(cntr)
 !$omp end task

 cntr = cntr - 1
enddo
!$omp end single
!$omp end parallel

21

tinyurl.com/tacc-2019-ihpcss	

Exploiting tasks within while loop
The	generating	loop	is	executed	SERIALLY,	but	
concurrently	with	the	dequeued	tasks.	
•  So,	the	non-tasking	loop	parts	should	not	be	costly.	
•  Any	generated	tasks	can	be	picked	up	directly	by	other	team	
members.	

22

#pragma omp single
while(cntr>0){
 #pragma omp task firstprivate(cntr)
 work_long_time(cntr);

 cntr--;
}

Serial	–					incrementation	

Parallel	–			Tasking	

Serial	–					generation	

tinyurl.com/tacc-2019-ihpcss	

Pointer Chasing
• ptr	points	to	a	C/C++	structure	or	F90	defined	type	
 struct node *ptr;
…//initialize pointer
#pragma omp parallel
#pragma omp single

while(ptr){
 #pragma omp task firstprivate(ptr)
 process(ptr);

 ptr = ptr->next;
}

 integer,pointer :: ptr
…! initialize pointer
!$omp parallel
!$omp single

do while(associated(ptr))
 !$omp task firstprivate(ptr)
 process(ptr)
 !$omp end task

 ptr = ptr%next
enddo

!$omp end single
!$omp end parallel 23

tinyurl.com/tacc-2019-ihpcss	

Undeferred Tasks with if clause

24

while(ptr){

 usec=ptr->cost*factor;

 #pramga omp task if(usec>0.01) firstprivate(ptr)
 process(ptr)

 ptr = ptr->next;
}

If	the	if	argument	is	false	task	is	undeferred	(exec	time	(usec)	is	less	than	0.01).		
•  Generating	thread	will	suspend	generation	
•  Generating	thread	will	execute	the	task		
•  Generating	thread	will	resume	generation	

tinyurl.com/tacc-2019-ihpcss	

Task depend clause
Following	a	graph	

25

#pragma omp parallel
#pragma omp single
{
 #pragma omp task depend(out:a,b,c)
 f1(&a, &b, &c);
 #pragma omp task depend(out:d,e)
 f2(&d, &e);
 #pragma omp task depend(in:c,d)
 f3(c,d);
 #pragma omp task depend(out:e)
 f4(&e);
 #pragma omp task depend(in:a) depend(out:b,c)
 f5(a,&b,&c)
}

T1

T2

T3

T4

T5

T1	 T2	

T3	 T4	

T5	
b	 c	

a	
c	 d	 e	

b	

WaR	
WaW	
RaW	

e	

tinyurl.com/tacc-2019-ihpcss	

Summary

•  Tasks are used mainly in irregular computing.
•  Tasks are often generated by a single thread.
•  Task generation can be recursive.
•  Depend clause can prescribe dependence.
•  Priority provides hint for execution order.
•  Firstprivate is default data-sharing attribute, shared

variables remain shared.
•  Untied generator task can assure generation progress.

26

Not	discussed	here.	

tinyurl.com/tacc-2019-ihpcss	

--The END--
Questions?

References:
OpenMP Programming: The Next Step

More Steps? We can cover Task Dependences, time permitting.

27

tinyurl.com/tacc-2019-ihpcss	

Tasking
Review Worksharing and Limitations
Basic Task: Syntax and Operations
Task Synchronization
Running Tasks in Parallel
Data-sharing and firstprivate Default for Tasks
Common Use Cases for Tasks
Task Dependences
Taskloop

28

tinyurl.com/tacc-2019-ihpcss	

Depend clause

•  Dependences	are	derived	from	dependence-type	and	
the	list	items	of	the	depend	clause.	

29

Syntax:		 		… task depend(dependence-type: list) 		

dependence-type:	==	what	the	task	needs	to	do	with	list	item	
							in 	 	think	of	as	a	read	
					out 	 	think	of	as	a	write	
		inout 	 	think	of	as	a	read	and	then	a	write	

	

						list 	 	item	(variable)	needing	to	“Read”	or	“Write”	

tinyurl.com/tacc-2019-ihpcss	

Task 1
execution
dependence

Dependences

When runtime executes
T0, it checks previously
generated tasks for
identical list items (var1).

There are no previous
tasks– so this task has
NO dependence. EVEN
if it has an IN (read)
dependence-type!

…	omp	task	depend(<dep-type>:var1)	

Parallel	region	num_threads(4)	

queue	4	iterations	

0	

T0	

30	

tinyurl.com/tacc-2019-ihpcss	

Task 3
execution
dependence

Dependences

T3 checks previously
generated tasks for
identical list times
(var1).

If an identical list item
exists in previously
generated tasks, T3
adheres to the
dependence-type rule.

…	omp	task	depend(<dep-type>:var1)	

Parallel	region	(num_threads(4)	

queue	4	iterations	

0	

T0	
T1	
T2	
T3	

31	

tinyurl.com/tacc-2019-ihpcss	

Task depend clause
Flow	Control	(RaW,	Read	after	Write)	

32

 x = 1;
#pragma omp parallel
#pragma omp single
{
 #pragma omp task shared(x) depend(out: x)
 x = 2;
 #pragma omp task shared(x) depend(in: x)
 printf("x = %d\n", x);
}
...

Print	value	is	
	always	2.	

T1	is	put	on	queue,	
sees	no	previously		
queued	tasks	
with	x	identifierà	
No	dependences.	

T2	is	put	on	queue,	
sees	previously	queued	
	task	with	identifierà	
Has	RaW	dependence.	

tinyurl.com/tacc-2019-ihpcss	

Task depend clause
Anti-dependence	(WaR,	write	after	read)	

33

 x = 1;
#pragma omp parallel
#pragma omp single
{
 #pragma omp task shared(x) depend(in: x)
 printf("x = %d\n", x);
 #pragma omp task shared(x) depend(out: x)
 x = 2;
}
...

Print	value	is	
	always	1.	

T1	is	put	on	queue,	
sees	no	previously		
queued	tasks	
with	x	identifierà	
No	dependences.	

T2	is	put	on	queue,	
sees	previously	queued	
	task	with	identifierà	
has	WaR	dependence.	

tinyurl.com/tacc-2019-ihpcss	

Task depend clause
Output	Dependence	(WaW,	Write	after	Write)	

34

 x = 1;
#pragma omp parallel
#pragma omp single
{
 #pragma omp task shared(x) depend(out: x)
 printf("x = %d\n", x);
 #pragma omp task shared(x) depend(out: x)
 x = 2;
}

Print	value	is	
	always	1.	

T1	is	put	on	queue,	
sees	no	previously		
queued	tasks	
with	x	identifierà	
No	dependences.	

T2	is	put	on	queue,	
sees	previously	queued	
	task	with	identifierà	
has	WaW	dependence.	

tinyurl.com/tacc-2019-ihpcss	

Task depend clause
	(RaR,	no	dependence)	

35

 x = 1;
#pragma omp parallel
#pragma omp single
{
 #pragma omp task shared(x) depend(in: x)
 printf("x = %d\n", x);
 #pragma omp task shared(x) depend(in: x)
 x = 2;
}

Print	value	is	
1	or	2.	

T1	is	put	on	queue,	
sees	no	previously		
queued	tasks	
with	x	identifierà	
No	dependences.	

T2	is	put	on	queue,	
sees	previously	queued	
	task	with	x	identifierà	
has	NO	ordering	
(because	it	is	RAR)	

tinyurl.com/tacc-2019-ihpcss	

Task depend clause
Following	a	graph	

36

#pragma omp parallel
#pragma omp single
{
 #pragma omp task depend(out:a,b,c)
 f1(&a, &b, &c);
 #pragma omp task depend(out:d,e)
 f2(&d, &e);
 #pragma omp task depend(in:c,d)
 f3(c,d);
 #pragma omp task depend(out,e)
 f4(&e);
 #pragma omp task depend(in:a) depend(out:b,c)
 f5(a,&b,&c)
}

T1

T2

T3

T4

T5

T1	 T2	

T3	 T4	

T5	
b	 c	

a	
c	 d	 e	

b	

WaR	
WaW	
RaW	

e	

tinyurl.com/tacc-2019-ihpcss	

Task Depend Clause
Following	non-computed	variables--	works,	too.	

37

#pragma omp parallel
#pragma omp single
{
 #pragma omp task depend(out:t1,t2,t3)
 f1(&a, &b, &c);
 #pragma omp task depend(out:t4,t5)
 f2(&d, &e);
 #pragma omp task depend(in:t3,t4)
 f3(c,d);
 #pragma omp task depend(out,t5)
 f4(&e);
 #pragma omp task depend(in:t1)depend(out:t2,t3)
 f5(a,&b,&c)
}

T1

T2

T3

T4

T5

T1	 T2	

T3	 T4	

T5	
b	 c	

a	
c	 d	 e	

b	

WaR	
WaW	
RaW	

e	

tinyurl.com/tacc-2019-ihpcss	

Tasking
Review Worksharing and Limitations
Basic Task: Syntax and Operations
Task Synchronization
Running Tasks in Parallel
Data-sharing and firstprivate Default for Tasks
Common Use Cases for Tasks
Task Dependences
Taskloop

38

tinyurl.com/tacc-2019-ihpcss	

taskloop
Iterations	of	loops	are	executed	as	tasks	(of	a	taskgroup)	

Single	generator	needed	
All	team	members	are	not	necessary	
Implied	taskgroup	for	the	construct	

39

Syntax:		... omp taskloop [clauses] 		

•  some	clauses:	

or	grainsize	
numtasks	
																								default:	

number	of	iterations	assigned	to	a	task	(See	spec	4	details.)	
number	of	tasks	to	be	executed	concurrently	(See	spec	4	details.)	
--number	of	tasks	&	iterations/task	implementation	defined	

untied	 tasks	need	not	be	continued	by	initial	thread	of	task	

nogroups 		 don’t	create	a	task	group	

priority	 for	each	task	(default	0)		

tinyurl.com/tacc-2019-ihpcss	

Taskloop

void parallel_work(void) { // execute by single in parallel
 int i, j;
 #pragma omp taskgroup
 {
 #pragma omp task
 long_running(); // can execute concurrently

 #pragma omp taskloop private(j) grainsize(500) nogroup
 for (i = 0; i < 10000; i++) //can execute concurrently
 for (j = 0; j < i; j++)
 loop_body(i, j);

 } // end taskgroup
} 40

tinyurl.com/tacc-2019-ihpcss	

Summary

•  Tasks are used mainly in irregular computing.
•  Tasks are often generated by a single thread.
•  Task generation can be recursive.
•  Depend clause can prescribe dependence.
•  Priority provides hint for execution order.
•  First private is default data-sharing attribute, shared

variables remain shared.
•  Untied generator task can assure generation progress.

41

