Task parallelism and PGAS

- Trends and Challenges on Programming Models for Extreme-
Scale Computing -

Mitsuhisa Sato

Deputy Project Leader and Team Leader, Architecture
Development Team, Flagship 2020 Project

Team Leader, Programming Environment Research Team
RIKEN Center for Computational Science




Outline of my talk

e Short introduction

o Challenges of Programming Languages/models
for exascale computing

e Agenda
e Question : “MPI+X" for exascale?

e Task parallel programming in OpenMP
. Xis Task? MPI+Task?

o What is PGAS (Partitioned Global Address Space) model, and
advantage?

e What PGAS for “MPI+X"?




Challenges of Programming Languages/models
for exascale computing

e Multithreading/multitasking models for manycore node
e “Manycore” is inevitable for higher node performance
e Multitasking is useful to overlap comm with computation.

May fill a gap between node performance and comm. performance.

e PGAS for a programming model of efficient one-sided
communication for “manycore”.

e Strong Scaling in node

e SIMD & Accelerator (GPU)

o Complex memory hierarchy
e Workflow and Fault-Resilience
e (Power-aware)




“MPI+ X" for exascale?

e X is OpenMP!

e “MPI+Open” is now a standard programming for high-
end systems.

e I'd like to celebrate that OpenMP became “standard” in
HPC programming

e Questions:
e Then, What's the style OpenMP?

) Om
anzi R-CCS




“Classic” OpenMP

e Mainly using parallel loop “parallel do/for” for data
parallelism
e Fork-Join model

C AR U T, OK!
Just Like this!

#pragma omp parallel for reduction(+:s)
for(1=0; 1<1000;1++) s+= al1];

lteration
space
S E

) Om
RIKEN R‘CCS




Task in OpenMP

e Available starting with OpenMP 3.0 (2008)

e A task is an entity composed of
e Code to be executed
e Data environment (inputs to be used and outputs to be generated)
e A location (stack) where the task will be executed (a thread)

e Allowing the application to explicitly create tasks provide
support for different execution models

e More elastic as now the threads have a choice between multiple
existing tasks

e Require scheduling strategies to be more powerful
o Move away from the original fork/join model of OpenMP constructs




Task in OpenMP - history —

e OpenMP 3.0 - May 2008
e Task support (useful to parallelize recursive function calls)

e OpenMP 3.1 — July 2011

e Taskyield construct
o Extension of atomic operations

e OpenMP 4.0 — July 2013
e SIMD constructs
e PROC_BIND and places
e Device constructs (for GPU/accelerator)
e Task dependencies

e OpenMP 4.5 - November 2015
e Taskloop constructs
e Task priority




Directives for task

e Task directive:
e Each encountering thread/task creates a new task
e Tasks can be nested

Fortran

ISomp task [clause]
... Structured block ...
ISomp end task

C/C++
#pragma omp task [clause]
... Structured block ...

e Taskwait directive: Task barrier
e Encountering task is suspended until child tasks are complete
e Applies only to direct children, not descendants!

C/C++
#pragma omp taskwait

e OpenMP barrier
o All tasks created by any thread of the current Team are

guaranteed to be completed at barrier exit

) Om
RIKEH R‘CCS




An example of Task - recursive Fibonacci program -

e Task enables to parallelize recursive function calls

int fib(int n)

e Starting with single thread surrounded by 1f (n < 2)

“paralle
e Task directive creates a task to execute a function

call

e Taskwait directive to wait children

) Om
RIKEH R'ccs

III

directive

return x=+y;

}

{

return n;

int x = fib(n - 1):
int y = fib(n - 2):

int main(int argc,
char* argvl[])
{
[...]
§pragma omp parallel
{
§pragma omp single
{
fib(input):

int fib(int n) {
if (n < 2) return n;
int x, vy:
#pragma omp task shared(x)
{
¥ = fib(n - 1)
}
#pragma omp task shared(y)
{
y = fib(n - 2);
}
#pragma omp taskwait
return =+y;




Optimized versions

e Control granularity
e Skip the OpenMP overhead once a certain n is reached

int fib(int n) { int fib(int n) {
if (n <« 2) return n; if (n < 2) return n:

int x, y; if (n <= 30)

#ipragma omp task shared(x) \ return serfib(n):
if(n > 30) int x, vy:

{ #pragma omp task shared(x)
x = fibi(n - 1): {

} x = fib(n - 1):

#pragma omp task shared(y) \ }
if(n > 30)

#pragma omp task shared(y)

{ {

y = fib(n - 2); y = fib(n - 2);

}
#pragma omp taskwait

}

#pragma omp taskwait

return x+y; return =+y;

} }

Taken from IWOMP Tutorial: 30th September 2015,

e (%!!g “Advanced OpenMP Tutorial — Tasking”, by Christian Terboven, Michael Klemm




Task dependency in OpenMP 4.0 (2013)

e Task directive in OpenMP4.0 creates a task with dependency
specified “depend” clause with dependence-type in, out, or inout
and variable
o Flow dependency: in after out (taskA to taskC, taskB to taskC)

e Anti dependency: out after in (taskC to taskD)
o Output dependency: out after out (taskA to taskD)
e If there are no dependency, tasks are executed immediately in parallel
e NOTE: The task dependency depends on the order of reading and

writing to data based on the sequential execution.

#pragma omp parallel
#pragma omp single

{ flow dep.
#pragma omp task depend(out:A)

A=1; /* taskA */
#pragma omp task depend(out:B) output dep. I
B=2; /* taskB */ -

#pragma omp task depend(in:A, B) depend(out:C) RGN
C=A+B; /* taskC */ +* antidep.

#pragma omp task depend(out:A)
A=2; /* taskD */

om
e R-CCS j




Example: Block Cholesky Factorization

e Block Cholesky Factorization consists of
o potrf: This kernel performs the Cholesky factorization of a diagonal (lower

triangular) tile
e trsm: a triangular solve applies an update to an off-diagonal tile

e syrk: symmetric rank-k update applies updates to a diagonal tile
e gemm: matrix multiplication applies updates to an off-diagonal tile

void cholesky(const int ts, const int nt, double* A[nt][nt])
{ Alnt][nt][ts*ts]
for (int k =0; k < nt; k++) { In right example
x_potrf(A[K][K], ts, ts); AL4][4][16]
for (inti=k+1;i<nt; i++) nt
x_trsm(A[K][k], A[K][i], ts, ts); | ‘ B
for(inti=k+1;i<nt;i++){ ts{
for (intj=k+1;j<i; j++) \_Y_/
x_gemm(A[k][i], A[k][j], A[iI[i], ts, ts); =
x_syrk(A[K][i], Alil[i], ts, ts);

— nt




Question: How do you parallelize this in OpenMP?

void cholesky(const int ts, const int nt, double™ A[nt][nt]) -
{

AILO][1] AlO][2] AlO][3]

for (int k = 0; k < nt; k++) {

x_potrf(A[k][k], ts, ts);
for (inti=k+1;i<nt;i++)
x_trsm(A[k][k], A[K][i], ts, ts); trsm
for (inti=k+1;i<nt;i++){
for(intj=k+1;j<i;j++)
x_gemm(A[K][i], A[K][j], A[jl[i], ts, ts); gemm
x_syrk(A[k][i], A[il[i], ts, ts);

ALO][T]

AlO][3]

All[2] AlN[3]

) .
nt
} \ |
} { | \ - Al2][3]
{ -
ts L ot Al2]13]
om ,

Seen R-CCS




Question: How do you parallelize this in OpenMP?

void cholesky(const int ts, const int nt, double* A[nt][nt]) ]
{
for (int k = 0; k < nt; k++) { ]
x_potrf(A[k][k], ts, ts); - [ ]
for(inti=k+1;i<nt;i++) ]
x_trsm(A[K][k], A[K][i], ts, ts); trem [ ]
for (inti=k+ 1;i<nt;i++) { e
for (|ntj =k + 1, J < |, j++) aort) | | a2 || A
x_gemm(A[K][il, ALK](j], AL, ts, ts); | gemm
x_syrk(A[KI[i], AIi][il, ts, ts);
} - A[1][3] Al2][3]
} ]
} Al1][2] AL11[3]
Note: Azl

As ts increases, the calls to ge B
mm is increasing!
(right, the case of ts=5

Al2][3]

Al2][3]

) Om
RIKEN R'ccs




An answer: using OpenMP “classic” parallel loop

void cholesky(const int ts, const int nt, double* A[nt][nt])
{ - -
int i1;
for (int k = 0; k < nt; k++) {

x_potrf(A[k][Kk], ts, ts);

#pragma omp parallel for
for (int 1 = k + 1; 1 < nt; i++) { These loops can
) x_trsm(A[LK1[k]l, A[K][1], ts, ts); be collapsed

for (int i = k + 1; i < nt; i++) {
#pragma omp parallel for
for (int j =k + 1; j < i; j+v) {
x_gemm(ALKIL1], ALKID1. ADI1L1], ts, ts);
+
b5 Syrk can be called

#pragma omp parallel for separately
for (int i = k + 1; i < nt; i++)
x_syrk(A[K]L1], A[1][1], ts, ts);




An example using tasks

void cholesky(const int ts, const int nt, double* A[nt][nt])
{
#pragma omp parallel
#pragma omp single
for (int k = 0; k < nt; k++) {

#pragma omp task depend(out:A[K][Kk])
{ x_potrf(A[K][K], ts, ts); }

for (aint 1 = kK + 1; 1 < nt; 1++) {
#pragma omp task depend(in:A[k][k]) depend(out:A[K][1])
{ x_trsm(ALK1[K]1., ALKILi], ts, ts); }

+

for (int 1 = k + 1; 1 < nt; 1++) {

for (int j = k + 1; j < i; j++) {

#pragma omp task depend(in:A[k][1], A[K][)]) depend(out:A[jll[1]D)

{ . x_gemm(ALKIL1]1, ALKID31. ADJ1L1]. ts, ts);}
#pragma omp task depend(in:A[k][1]) depend(out:A[1][1])
{ x_syrk(ALK1L1]1, A[L1]1[i], ts, ts);}
by
+
#pragma omp taskwait
}




What's task graph created?

void cholesky(const iInt ts, const int nt, double* A[nt][nt])

{
#pragma
#pragma

for
#pragma
{

#pragma
{

#pragma omp task depend(in:A[K][1]., A[K][J]) depend(out:A[j]lL[1]D

{

#pragma
{

by

omp parallel

omp single

(int K = 0; k < nt; k++) {

omp task depend(out:A[K][K])

x_potrf(A[Kk][k], ts, ts); }

for (int 1 = k + 1; 1 < nt; 1++) {

omp task depend(in:A[k][k]) depend(out:A[K]L1])
x_trsm(A[K1[Kk]. ALKI[i]l. ts, ts); }

>

for (int i =k + 1; i < nt; i++) {
for (int j = k + 1; j < i; j++) {

) x_gemm(ALKIL1]. ALKID1. ADILI], ts, ts);}

omp task depend(in:A[k][1]) depend(out:A[i][1])
x_syrk(ALKILi1, ALi1[i]., ts, ts);}
}

#pragma omp taskwait

}

) Om
RIKEN R‘CCS

AL0](3]

AlN[2]

AL2](3]

Al2][3]



How about performance?

e Platform: Intel Haswell E5-2680V3 2.50 GHz, 12core 24 threads
X 2 sockets
e Problem size : 4096 x 128

500
—o—Task
450
--For
400 //
300
250 /
200 / /’\
o AY \-\\
100 / ~—
50 ‘
0 .
0 5 10 15 20 25 30 35 40 45 50

) Om
RIKEN R‘CCS




Vo)
i
o e e—————— o =
(V)] I N e =
o 8 =1 — ===
(g0} — - D - | e p
m Eecl=iz===l-u T — m
+ = U||HIH| ] —gg====— i’
U ) T H LH =" Yo
2 o = | L )
O = T g gall —Bl=======" —
c i ||"|| = - s==- (¢+]
- B M e = e———— —
R = o
M [ IIH - | ” o —— J————————— y
—THH AHAH = o
= [z || =
T HIEIE I HTH ] - ST
m H O o ||| |H = H- =====

Ci.CIE

EE e = &R

zzzzzzzzzzz _ i == asnnnnlnnn
= N EE EEE D N e

. F (|| L] 020 Ee———— annnnnlinn

==———f L

0 . ||;| =— T

= L [ = 1| ]
u-lu- H | e | S==== -
N al

0,008

Ci.DlEEI

EEEEEEEEEE

By using Task
EE

=
(rDB

Ci.DlB

_u_ﬂ_
(-

Taking a look closer at execution profile!

000000



This is not complete tutorial, -

e Data scope rules ---
e New clauses
e final clause
e Mergable clause
e Taskyield
e Taskloop

o Parallelize a loop using OpenMP tasks
e Taskgroup

e Specifies a wait on completion of child tasks and their
descendent tasks

) Om
anzi R-CCS




“MPI+ X" for exascale?

e X is OpenMP!

e “MPI+Open” is now a standard programming for high-
end systems.

e Questions:
e X is OpenMP task !!!
e Then, what is a role of OpenMP?

) Om
anzi R-CCS

20



“MPI task” in OmpSs approach

e OmpSs (BSC) proposed an approach to make a block containing
MPI calls (“MPI task”) a task in OpenMP task programming.
o Advantage: It enables overlapping with computation and
communications, and hiding communication latency.

Node A Node B

#pragma omp parallel
#pragma omp single
{
#pragma omp task depend(out:A)

A=..; /* taskA */ /\ / MPI_send
#pragma omp task depend(in A, out B)

B = foo(A) /* taskB */ taskC /
#pragma omp task depend(in:A) depend(out:C) MPI recv

{ MPI recv(....); /* communication */
C =goo(A, ...);
} /* taskC */

#pragma omp task depend(in B, C)
D=B+C /* taskD */

}

Task B and communication in task C can be overlap

Note: In this case, MPI_Irecv can do the same thing.

) Om
anzi R-CCS




A Case of Cholesky Factorization in Distributed memory
e Data dependency between nodes involves data communications.

node 1 node 2 node 3 node 4

ALO][T]

ALO][1]

A[0][2] A[0][3]

A[[2]

Alll2]

Note: data must be
distributed in cyclic manner
for load balancing, so that
actual task-dependency graph
may be more complicated

AL2][3]

) Om
RIKEN R'ccs




A Problem: communication between threads in manycore

e Aggregate comm. .
performance between —e—Send/Recy
mUItiple threads 10000 — «=@==Send/Recv (2 threads)
bEtween nodes in KN LS Send/Recv (4 threads)

8000

=
E =@ Pyt
e The performance using £ 6000 put (2 threads)
Send/Recv ~may be" better 3 . put (4 threads)
than that using “Put”. ks
o the performance of 2000
MPI THREAD MULTIPLE is
- 0
lower than that of the single- TN Yo R R RNNXXEFENESEESSSS

threaded communication.

Transfer size / threads [Bytes]

e Why MPI_THREAD_MULTIPLE is so slow?
o “giant-lock” for message ordering and tag matching for wild-card.
e New proposal is being discussed: “end-point” for thread.

e Can RDMA be another “light-weight” solution for communication
in multithreaded execution of manycore?

) Om
anzi R-CCS




Thread-safety of MPI: How you can use MPI in tasks

e MPI_Init_thread get supported thread-safety level

e MPI_THREAD_SINGLE
e A process has only one thread of execution.

e MPI_THREAD_FUNNELED

e A process may be multithreaded, but only the thread that initialized MPI
can make MPI calls.

e MPI_THREAD_SERIALIZED

e A process may be multithreaded, but only one thread at a time can
make MPI calls.

e MPI_THREAD_MULTIPLE

o A process may be multithreaded and multiple threads can call MPI
functions simultaneously.




“MPI+ X" for exascale?

e X is OpenMP!

e “MPI+Open” is now a standard programming for high-
end systems.

e Questions:

e “MPI+0OpenMP” is still a main programming
model for exa-scale?

e MPI has some problem on comm. in
multithreaded execution (tasks) !!!

e Can PGAS replace(beat!?) “MPI” for exascale?
not “MPI+X", but “PGAS+X"!1!

A om

e R-CCS

25



PGAS (Partitioned Global Address Space) models

e Light-weight one-sided communication and low overhead synchronization semantics.
e PAGS concept is adopted in Coarray Fortran, UPC, X10, XcalableMP.,

e XMP adopts notion Coarray not only Fortran but also “C”, as “local view"” as well as
“global view"” of data parallelism.

e Advantages and comments
e Easy and intuitive to describe, not noly one side-comm, but also stride comm.

e Recent networks such as Cray and Fujitsu Tofu support remote DMA operation which
strongly support efficient one-sided communication.

e Other collective communication library (can be MPI) are required.

CGPOP : 7500 nodes NICAM : 640 nodes
5.88 84% speed up M Calc.
6 : B Sleeve comm.
M GlobalSum Case study of XMP on K computer
5 B Sleeve comm. 7% speed up I g
Calc. .

. W Calc i CGPOP, NICAM: Climate code
Q
& ; 3.20 3.48 3.27
£, 5-7 % speed up is obtained by replacing
- o

1 MPI with Coarray

0

) OII Original Optimization Original Optimization

RIKZH R‘CL)




XcalableMP(XMP) nttp://www.xcalablemp.org

e What's XcalableMP (XMP for short)?

o A PGAS programming model and language for
distributed memory , proposed by XMP Spec WG

e XMP Spec WG is a special interest group to design
and draft the specification of XcalableMP language.
It is now organized under PC Cluster Consortium,
Japan. Mainly active in Japan, but open for
everybody.

e Project status (as of June 2016)

e XMP Spec Version 1.3 is available at XMP site. new
features: mixed OpenMP and OpenACC, libraries for
collective communications.

e Reference implementation by U. Tsukuba and Riken
AICS: Version 1.2 (C and Fortran90) is available
for PC clusters, Cray XT and K computer. Source-to-
Source compiler to code with the runtime on top of
MPI and GasNet.

e HPCC class 2 Winner 2013. 2014

MPI

XcalableMP YGAS

XMP
viev
pr

provides a global

v for data parallel

ogram in PGAS
model

Possiblity of Performance tuning

o

Programming cost

A om
arzn - R-CCS

= Language Features

= Directive-based language extensions for Fortran and
C for PGAS model

= Global view programming with global-view
distributed data structures for data parallelism

SPMD execution model as MPI
pragmas for data distribution of global array.

Work mapping constructs to map works and
iteration with affinity to data explicitly.

Rich communication and sync directives such as
“gmove” and “shadow”.

Many concepts are inherited from HPF

= Co-array feature of CAF is adopted as a part of the
language spec for local view programming (also
defined in C).

int array[YMAX][XMAX];

Code example

p

’ add to the serial code : incremental parallelization ‘

#pragma xmp nodes p(4)

#pragma xmp template t(YMAX)
#pragma xmp distribute t(block) on
#pragma xmp align array[i][*] to t(i)

main(){
inti, j, res;
res =0;

#pragma xmp loop on t(i) reduction(+:res)
for(i =0; i <10; i++)
for(j=0; j <10; j++)}{
array[i][j] = func(i, j);

work sharing and data synchronization

res += array[i][j1;
}
}



CAF: Co-Array Fortran

e Global address space programming model
e one-sided communication (GET/PUT)

e SPMD execution model

e Adopted in Fortran 2008

- integer a(10,20)[*
e Co-array extension YR ES ]

Each node (processor) has
different “image” - - -

- - H 1 A 2 - N
real, dimension(n)[*] :: x,y image Inage image

x(:) = y(:)[al
Copy data y on image of g to local x (get)
e Coarray provides language construct

for data transfer and synchronization “ _-
Programmer can control:

e Data distribution

: . image 1 image 2 image N
 Assignment of computation A s imag
o Communications it (this_image() > 1)
- a(1:10,1:2) =
e amenable to compiler-based a(1:10.10:20)[this_image()-1]

communication optimization
R




Local-view XMP program: Coarray

e XMP includes the coarray feature imported from Fortran 2008
for the local-view programming.

e Basic idea: data declared as coarray can be accessed by remote nodes.
e Coarray in XMP/Fortran is fully compatible with Fortran 2008.

b is declared as a coarray.

real b(8)[*] «~—

if (xmp_node num() == 1) then
a(:) = b(:)[2] ~—

e Coarrays can be used in XMP/C.
e The subarray notation is also available as an extension.

Node 1 gets b from node 2.

® Declaration float b[8]:[*];

® Put a[0:3]:[1] = b[3:3]; | pufsbtonode 1.
® Cet a[0:3] = b[3:3]:[2]; | +—— gets b from node 2.
® Synchronization void xmp_sync_all(int *status)

) Om
anzi R-CCS




PGAS and remote memory access (RMA)/one-sided comm.

e PGAS is a programming model relating to distributed memory system with
a shared address space that distinguishes between local (cheap) and
remote (expensive) memory access.

e Easy and intuitive to describe remote data access, for not only one side-comm,
but also stride comm.

e RMA is a mechanism (operation) to access data in remote memory by
giving address in (shared) address space.

o RDMA is a mechanism to directly access data in remote memory without involving
the CPU or OS at the destination node.

e Recent networks such as Cray and Fujitsu Tofu support remote DMA operation
which strongly support efficient one-sided communication.

e PGAS is implemented by RMA providing light-weight one-sided
communication and low overhead synchronization semantics.

e For programmers, both PGAS and RMA are programming interfaces and
offer several constructs such as remote read/write and synchronizations.

e MPI3 provides several RMA (one-sided comm.) APIs as library interface.

) Om
anzi R-CCS



“Compiler-free” approaches for PGAS

e (Language: UPC, CAF, Chapel, XcalableMP)
e Library approach: MPI3 RMA, OpenShmem, GlobalArray, ---
e C++ Template approach: UPC++, DASH, -

e This approach may increase portability, clean separation from base
compiler optimization, --- but sometimes hard to debug in C++
template:--

e But, approach by compiler will give:

e New language, or language extension provides easy-to-use and
intuitive feature resulting in better productivity.

o Enable compiler analysis for further optimization: removal of
redundant sync and selection of efficient communication, etc, -

e But, in reality, compiler-approach is not easy to be accepted for
deployment, and support many sites, -




Should everything be written in PGAS?

e MPI broadcast operation can be
written in CAF easily, -

e But, is it efficient?

~_~

e Should use “co broadcast” in
CAF.

e Sophisticated collective
communication libraries of
“matured” MPI are required

e Obviously, PGAS need to
collaborate with MPI.

) Om
RIKEH R‘CCS

REAL(8),DIMENSION(:),ALLOCATABLE :: ARRAY

CALL MPI_BCAST(ARRAY, MSGSIZE, MPI_REALS, 0,
MPI_COMM_WORLD, IERR)

CALL MPI_COMM_SIZE(MPI_COMM_WORLD,NIMG,
CALL MPI_COMM_RANK(MPI_COMM_WORLD,ID, IERR)

IERR)

=~

REAL(8),DIMENSION(:),CODIMENSION[:],ALLOCATABLE :: ARRAY

NIMG= NUM_IMAGES()
ID= THIS_IMAGE()

SYNC ALL

IF(ID /= 1) THEN

ARRAY(1:MSGSIZE) = ARRAY(1:MSGSIZE)[1]
END IF

SYNC ALL
100 »100 100 100
=ARRAY(1:1)[1] ARRAY(1:1)= ARRAY(1:1)= ARRAY(1:1)=

32



Can PGAS replace MPI? / Can PGAS be faster than MPI?

e Advantages of RMA/RDMA Operations
o (Note: Assume MPI RMA is an API for PGAS)

o Mmultiple data transfers can be performed with a single
synchronization operation

e Some irregular communication patterns can be more
economically expressed

e Significantly faster than send/receive on systems with
hardware support for remote memory access

. Recently, many kinds of high-speed interconnect have hardware
support for RDMA, including Infiniband, --- as well as Cray and Fujitsu.

e Simpler than MPI in the context of multithread env.
o It should be proven --- not yet.




Case study: stencil communication KTJ
e Typical communication pattern in domain- Y .
decomposition. |

e Advantage of PGAS: Multiple data transfers with a i
single synchronization operation at end :
| o 5\
e PUT non-blocking outperforms MPI in Himeno |
Benchmark!
e Don’t wait ack before sending the next data (by FJ-RDMA) _ .
imagel image2
14000 _ _ S
Himeno Size-XL R
12000 4
’
0000 £ A
NOTE: The detail of this results is éli ,/' A
to be presented in HPCAisa 2018: | & 8000 o =
Hidetoshi Iwashita, Masahiro "0 6000 VLNl
() ~
Nakao, Hitoshi Murai, Mitsuhisa = /”
b 4000 - :
Sato, “A Source-to-Source £ % = @ = PUT non-blocking
Translation of Coarray Fortran < 2000 ‘/’/ —a— MPI original
with MPI for High Performance” S o & — & — MPI non-blocking
sync images
0 256 512 768 1024 G s o
R om # nodes ¥

e R-CCS




MPI RMA as a underlying comm. layer for PGAS?

e “MPI is too low and too high API for communication”. (Prof.
Marc Snir, JLESC 7th WS)

MPI RMA APIs offer their PGAS model rather than “primitives” for
other PGAS.

e In case of our XMP Coarray implementation:

Using “passive target”

MPI flush operation and synchronization do not match to
implement “sync_images”.

Complex “window” management to expose the memory as a
coarray.

(We need more study for better usage of MPI RMA)
Fujitsu RDMA interface is much faster in K-computer.



“MPI+ X" for exascale?

e X is OpenMP!

e “MPI+Open” is now a standard programming for high-
end systems.

e Questions:

o “MPI+OpenMP” is still a main programming model for
exa-scale?

e PGAS can beat “MPI” in some cases.
e PGAS seems good in multithreading.

“PGAS +0penMP task” ??11

) Om
RIKEH R'ccs

36



Task in OpenMP and extension to between nodes

e Task directive in OpenMP4.0 creates a task with dependency specified “depend”
clause

e The task dependency depends on the order of reading and writing to data based
on the sequential execution.

e OpenMP multi-tasking model cannot be applied to tasks running in different nodes since
threads of each nodes are running in parallel.

e In OmMpSs, interactions between nodes are described through the MPI task that is
executing MPI communications (MPI task).

o Otherwise, run the same task program in all nodes to resolve dep. (StarPU)

#pragma omp parallel

. *  Flow dependency: The flow dependency occurs between
#pragma omp single

dependence-type out and in with same variables, similar

{ to read after write (RAW) consistency. It is shown in
mt A, B, C; between taskA and taskC with variable A, or taskB and
#pragma omp task depend(out:A) taskC with variable B.
A=1; /* task A */ S *  Anti dependency: The anti dependency occurs between
#pragma omp task depend(out:B) dependence-type in and out with same variables, similar
B=2: /% taskB */ I Lo write aftelzéeadd(WAl‘(IE) con;isten(l:oy;. I:c4is shown in
g : etween taskC and taskD with variable A.
#pragma omp task depend(in:A, B) depend(out:C) ,0' ti d . Output dependency: The output dependency occurs
C=A+B; /* taskC*/ LA between dependence-type out and out with same
#pragma omp task depend(out:A) variables, similar to write after write (WAW) consistency.
A=3; /* taskD */ It is shown in between taskA and taskC with variable A.
Y om
RIKEH R'ccs

37



Multitasking in XMP: our proposal

e For Intra-node

e Tasklet directive creates a task with dependency specified “in/out/inout”
clause in sequential order

e Same as in OpenMP4.0 and OMPss
e For Inter-node
e Describe communications by PGAS operations (Coarray and gmove)

e Annotated by get/put and get_ready/put_ready clauses to specify
dependency.

#pragma xmp tasklet tasklet-clause[, tasklet-clause[, ...]] on {node-ref | template-ref}
(structured-block)

where tasklet-clause is :
{in|out | 1nout} (variable[, variable, ...])

or

{put|get;j (tag)

or
{put_ready | get ready} (variable, {node-ref | template-ref}, tag)

#pragma xmp taskletwait [on {node-ref | template-ref}]

[




Put operation in tasklet

e put_ready clause: indicates that the specified data may be written by the
associated PUT operation

e This clause has the dependence-type out for the specified data on a node since its values are
overwritten by the remote node.

e put clause: indicates that the PUT operation may be performed in the associated
structured block.

e At the beginning of the block, the task waits to receive the post notification with the tag by the
put_ready clause to indicates that the data is exposed in the target node for the PUT operations.

Node 1 Node 2

#pragma xmp nodes P(2)

* When output dependencies for the data are satisf int A;[*], B, C, D, tag;
ied before executing the block, the clause expose

s the data for the PUT operation from the specifie

d set of nodes by sending the post notifications to
these nodes, starting the PUT operations eventua

lly in remote nodes. Then, it waits until remote op

erations are done. When the task receives the co #pragma xmp tasklet in(A) Out(C) on P(l)

mpletion notification of the PUT operation, the bl C=A; /* taskB */

#pragma xmp tasklet in(A) out(B) on P(1)
B=A; /* taskA */ g start

ock is immediately scheduled. complete
* When the post notification is received, the task is \
scheduled to execute the calculation and PUT ope #pragma xmp tasklet out(A) put(tag) on P(2) taskA

ration in the block. When the execution of the blo A:[1]=1; /*taskC */ put

ck is finished, the data written by the PUT operati
on is flushed and the completion notification is se #pragma xmp tasklet in(A) out(D) ¥
nt to the node matched by the tag. put ready(A P(l) tag) o P(l)

D =A; /* taskD */
@ O

e R-CCS 39




Summary: “MPI+ X" for exascale?

e X is OpenMP!

e “MPI+Open” is now a standard programming for high-
end systems.

PGAS (RDMA) +
MPI(collective) +
OpenMP task (+data parallel)

+ accelerator(GPU) offloading

We may heed more unified and sophisticated

programming model?

A om
RIKEH R'ccs 40




