
John Urbanic
Parallel Computing Scientist

Pittsburgh Supercomputing Center

Copyright 2018

Intro To Spark

Firing Up The Hands-On
Let’s make sure all is well with our hands-on environment first.

Grab a node

interact

We have hundreds of packages on Bridges. They each have many paths and variables that need to be set for their own proper environment, and they are
often conflicting. We shield you from this with the wonderful modules command. You can load the two packages we will be using as

Spark

module load spark

Tensorflow (Not now! But later)

module load tensorflow/1.5_gpu

Copy over our exercise data, and move into an interesting starting point

cp –r ~training/BigData .

cd BigData/Shakespear

Start up Spark

pyspark

You may see a lot of noise (warning! Warning!) which you should ignore as long as you get a nice “Wecome to Spark” message at the end.

Our Setup For This Workshop

After you copy the files from the training directory, you will have:

/BigData

/Clustering

/MNIST

/Recommender

/Shakespeare

Datasets, and

also cut and

paste code

samples are in

here.

The Shift to Big Data

Pan-STARRS telescope

http://pan-starrs.ifa.hawaii.edu/public/

Genome sequencers
(Wikipedia Commons)

NOAA climate modeling
http://www.ornl.gov/info/ornlreview/v42_3_09/article02.shtml

Collections
Horniman museum: http://www.horniman.ac.uk/

get_involved/blog/bioblitz- insects-reviewed

Legacy documents
Wikipedia Commons

Environmental sensors: Water temperature profiles

from tagged hooded seals
http://www.arctic.noaa.gov/report11/biodiv_whales_walrus.html

Library of Congress stacks
https://www.flickr.com/photos/danlem2001/6922113091/

Video
Wikipedia Commons

Social networks and the Internet

New Emphases

Challenges and Software are Co-Evolving

Scientific
Visualization

Statistics

Calculations on
Data

Optimization
(numerical)

Structured
Data

Machine
Learning

Optimization
(decision-
making)

Natural
Language

Processing

Image AnalysisVideo

Sound

Unstructured
Data

Graph
Analytics

Information
Visualization

Once there was only small data...

A classic amount of “small” data

Find a tasty appetizer – Easy!

Find something to use up these
oranges – grumble…

What if….

...then data got BIG.

8TB for $130

= 10 TB *

*Actually, a silly estimate. The original reference actually mentions a more accurate 208TB, and in
2013 the digital collection alone was 3PB.

Whys:
Storage got cheap
So why not keep it all?
Today data is a hot commodity $
And we got better at generating it

facebook
IoT
Science...

Pan-STARRS

telescope
http://pan-

starrs.ifa.hawaii.edu/publ

ic/

Genome sequencers
(Wikipedia Commons)

Collections
Horniman museum:

http://www.horniman.ac.uk

/

get_involved/blog/bioblitz-

insects-reviewed

Legacy

documents
Wikipedia

Commons

Environmental sensors:

Water temperature

profiles from tagged

hooded seals
http://www.arctic.noaa.gov/report1

1/biodiv_whales_walrus.html

These are both frameworks for distributing and retrieving data. Hadoop is focused on
disk based data and a basic map-reduce scheme, and Spark evolves that in several
directions that we will get in to. Both can accommodate multiple types of databases and
achieve their performance gains by using parallel workers.

Parallel Frameworks for Data

The mother of Hadoop was necessity. It is
trendy to ridicule its primitive design, but
it was the first step.

We have repurposed many of these
blocks to build a better framework.

SQL
DataFrame

Spark Idea

Driver
Python
Scala
Java

RAM

CPU

RAM

CPU

RAM

CPU

RAM

CPU

RAM

CPU

RAM

CPU

RDD
Resilient Distributed Dataset

Spark Formula

1. Create/Load RDD
Webpage visitor IP address log

2. Transform RDD
”Filter out all non-U.S. IPs”

3. But don’t do anything yet!
Wait until data is actually needed
Maybe apply more transforms (“distinct IPs)

4. Perform Actions that return data
Count “How many unique U.S. visitors?”

>>> lines_rdd = sc.textFile("nasa_19950801.tsv")

Simple Example

Read into RDD

Spark Context

The first thing a Spark program requires is a context, which interfaces with some kind of cluster to use. Our
pyspark shell provides us with a convenient sc, using the local filesystem, to start. Your standalone programs
will have to specify one:

from pyspark import SparkConf, SparkContext
conf = SparkConf().setMaster("local").setAppName("Test_App")
sc = SparkContext(conf = conf)

You would typically run these scripts like so:

spark-submit Test_App.py

>>> lines_rdd = sc.textFile("nasa_19950801.tsv")

>>> stanfordLines_rdd = lines_rdd.filter(lambda line: "stanford" in line)

>>> stanfordLines_rdd.count()
47

>>> stanfordLines_rdd.first()
u'glim.stanford.edu\t-\t807258357\tGET\t/shuttle/missions/61-c/61-c-patch-small.gif\t‘

Simple Example

Read into RDD

Transform

Actions

Lambdas

We’ll see a lot of these. A lambda is simply a function that is too simple to deserve its own subroutine.
Anywhere we have a lambda we could also just name a real subroutine that could go off and do anything.

When all you want to do is see if “given an input variable line, is “stanford” in there?”, it isn’t worth the
digression.

Most modern languages have adopted this nicety.

Common Transformations
Transformation Result

map(func) Return a new RDD by passing each element through func.

filter(func) Return a new RDD by selecting the elements for which func
returns true.

flatMap(func) func can return multiple items, and generate a sequence,
allowing us to “flatten” nested entries (JSON) into a list.

distinct() Return an RDD with only distinct entries.

sample(…) Various options to create a subset of the RDD.

union(RDD) Return a union of the RDDs.

intersection(RDD) Return an intersection of the RDDs.

subtract(RDD) Remove argument RDD from other.

cartesian(RDD) Cartesian product of the RDDs.

parallelize(list) Create an RDD from this (Python) list (using a spark context).

Full list at http://spark.apache.org/docs/latest/api/python/pyspark.html#pyspark.RDD

Same Size

Fewer
Elements

More
Elements

Common Actions

Transformation Result

collect() Return all the elements from the RDD.

count() Number of elements in RDD.

countByValue() List of times each value occurs in the RDD.

reduce(func) Aggregate the elements of the RDD by providing a function
which combines any two into one (sum, min, max, …).

first(), take(n) Return the first, or first n elements.

top(n) Return the n highest valued elements of the RDDs.

takeSample(…) Various options to return a subset of the RDD..

saveAsTextFile(path) Write the elements as a text file.

foreach(func) Run the func on each element. Used for side-effects (updating
accumulator variables) or interacting with external systems.

Full list at http://spark.apache.org/docs/latest/api/python/pyspark.html#pyspark.RDD

Pair RDDs

• Key/Value organization is a simple, but often very efficient schema, as we mentioned
in our NoSQL discussion.

• Spark provides special operations on RDDs that contain key/value pairs. They are
similar to the general ones that we have seen.

• On the language (Python, Scala, Java) side key/values are simply tuples. If you have an
RDD whose elements happen to be tuples of two items, it is a Pair RDD and you can
use the key/value operations that follow.

Pair RDD Transformations

Transformation Result

reduceByKey(func) Reduce values using func, but on a key by key basis. That is,
combine values with the same key.

groupByKey() Combine values with same key. Each key ends up with a list.

sortByKey() Return an RDD sorted by key.

mapValues(func) Use func to change values, but not key.

keys() Return an RDD of only keys.

values() Return an RDD of only values.

Note that all of the regular transformations are available as well.

Two Pair RDD Transformations

Transformation Result

subtractByKey(otherRDD) Remove elements with a key present in other RDD.

join(otherRDD) Inner join: Return an RDD containing all pairs of elements with
matching keys in self and other. Each pair of elements will be
returned as a (k, (v1, v2)) tuple, where (k, v1) is in self and (k,
v2) is in other.

leftOuterJoin(otherRDD) For each element (k, v) in self, the resulting RDD will either
contain all pairs (k, (v, w)) for w in other, or the pair (k, (v,
None)) if no elements in other have key k.

rightOuterJoin(otherRDD) For each element (k, w) in other, the resulting RDD will either
contain all pairs (k, (v, w)) for v in this, or the pair (k, (None, w))
if no elements in self have key k.

cogroup(otherRDD) Group data from both RDDs by key.

Full list at http://spark.apache.org/docs/latest/api/python/pyspark.html#pyspark.RDD

>>> x = sc.parallelize([("a", 1), ("b", 4)])

>>> y = sc.parallelize([("a", 2), ("a", 3)])

>>> z = x.join(y)

>>> z.collect()
[('a', (1, 2)), ('a', (1, 3))]

Simple Example

Pair RDD Actions

Transformation Result

countByKey() Count the number of elements for each key.

lookup(key) Return all the values for this key.

Full list at http://spark.apache.org/docs/latest/api/python/pyspark.html#pyspark.RDD

As with transformations, all of the regular actions are available to Pair RDDs, and there
are some additional ones that can take advantage of key/value structure.

MLib

MLib rolls in a lot of classic machine learning algorithms. We barely have time to touch
upon this interesting topic today, but they include:

• Useful data types
• Basic Statistics
• Classification (including SVMs, Random Forests)
• Regression
• Dimensionality Reduction (Princ. Comp. Anal., Sing. Val. Decomp.)
• Algorithms (SGD,…)
• Clustering…

Clustering
Clustering is a very common operation for finding grouping in data and has countless applications. This is a very simple
example, but you will find yourself reaching for a clustering algorithm frequently in pursuing many diverse machine
learning objectives, sometimes as one part of a pipeline.

Weight

S
iz

e

Coin Sorting

Clustering
As intuitive as clustering is, it presents challenges to implement in an efficient and robust manner.

You might think this is trivial to implement in lower dimensional spaces.

But it can get tricky even there.

We will start with 5000 2D points. We want to figure out how many clusters there are, and their centers. Let’s fire up
pyspark and get to it…

Sometimes you know how many clusters you have to start with. Often you don’t.
How hard can it be to count clusters? How many are here?

____ __
/ __/__ ___ _____/ /__
_\ \/ _ \/ _ `/ __/ '_/
/__ / .__/_,_/_/ /_/_\ version 1.6.0

/_/

Using Python version 2.7.5 (default, Nov 20 2015 02:00:19)
SparkContext available as sc, HiveContext available as sqlContext.
>>>
>>> rdd1 = sc.textFile("5000_points.txt")
>>>
>>> rdd2 = rdd1.map(lambda x: x.split())
>>> rdd3 = rdd2.map(lambda x: [int(x[0]),int(x[1])])
>>>

Finding Clusters

Read into RDD

Transform to words and integers

Let’s keep this around

*RDD map() takes a function to apply to the elements. We can certainly create our own separate function, but lambdas are a way many languages
allow us to define trivial functions “in place”.

br06% interact
...
r288%
r288% module load spark
r288% pyspark

>>> rdd1 = sc.textFile("5000_points.txt")
>>> rdd1.count()
5000
>>> rdd1.take(4)
[u' 664159 550946', u' 665845 557965', u' 597173 575538', u' 618600 551446']
>>> rdd2 = rdd1.map(lambda x:x.split())
>>> rdd2.take(4)
[[u'664159', u'550946'], [u'665845', u'557965'], [u'597173', u'575538'], [u'618600', u'551446']]
>>> rdd3 = rdd2.map(lambda x: [int(x[0]),int(x[1])])
>>> rdd3.take(4)
[[664159, 550946], [665845, 557965], [597173, 575538], [618600, 551446]]
>>>

Finding Our Way

____ __
/ __/__ ___ _____/ /__
_\ \/ _ \/ _ `/ __/ '_/
/__ / .__/_,_/_/ /_/_\ version 1.6.0

/_/

Using Python version 2.7.5 (default, Nov 20 2015 02:00:19)
SparkContext available as sc, HiveContext available as sqlContext.
>>>
>>> rdd1 = sc.textFile("5000_points.txt")
>>>
>>> rdd2 = rdd1.map(lambda x:x.split())
>>> rdd3 = rdd2.map(lambda x: [int(x[0]),int(x[1])])
>>>
>>>
>>> from pyspark.mllib.clustering import KMeans

Finding Clusters

Read into RDD

Transform

Import Kmeans

Finding Clusters

____ __
/ __/__ ___ _____/ /__
_\ \/ _ \/ _ `/ __/ '_/
/__ / .__/_,_/_/ /_/_\ version 1.6.0

/_/

Using Python version 2.7.5 (default, Nov 20 2015 02:00:19)
SparkContext available as sc, HiveContext available as sqlContext.
>>>
>>> rdd1 = sc.textFile("5000_points.txt")
>>>
>>> rdd2 = rdd1.map(lambda x:x.split())
>>> rdd3 = rdd2.map(lambda x: [int(x[0]),int(x[1])])
>>>
>>> from pyspark.mllib.clustering import KMeans
>>>
>>> for clusters in range(1,30):
... model = KMeans.train(rdd3, clusters)
... print clusters, model.computeCost(rdd3)
...

Finding Clusters

Let’s see results for 1-30 cluster tries

1 5.76807041184e+14

2 3.43183673951e+14
3 2.23097486536e+14

4 1.64792608443e+14

5 1.19410028576e+14
6 7.97690150116e+13

7 7.16451594344e+13
8 4.81469246295e+13

9 4.23762700793e+13

10 3.65230706654e+13
11 3.16991867996e+13

12 2.94369408304e+13
13 2.04031903147e+13

14 1.37018893034e+13

15 8.91761561687e+12
16 1.31833652006e+13

17 1.39010717893e+13
18 8.22806178508e+12

19 8.22513516563e+12

20 7.79359299283e+12
21 7.79615059172e+12

22 7.70001662709e+12
23 7.24231610447e+12

24 7.21990743993e+12

25 7.09395133944e+12
26 6.92577789424e+12

27 6.53939015776e+12
28 6.57782690833e+12

29 6.37192522244e+12

>>> for trials in range(10):
... print
... for clusters in range(12,18):
... model = KMeans.train(rdd3,clusters)
... print clusters, model.computeCost(rdd3)

Right Answer?

12 2.45472346524e+13

13 2.00175423869e+13
14 1.90313863726e+13

15 1.52746006962e+13

16 8.67526114029e+12
17 8.49571894386e+12

12 2.62619056924e+13

13 2.90031673822e+13

14 1.52308079405e+13
15 8.91765957989e+12

16 8.70736515113e+12
17 8.49616440477e+12

12 2.5524719797e+13
13 2.14332949698e+13

14 2.11070395905e+13
15 1.47792736325e+13

16 1.85736955725e+13

17 8.42795740134e+12

12 2.31466242693e+13
13 2.10129797745e+13

14 1.45400177021e+13

15 1.52115329071e+13
16 1.41347332901e+13

17 1.31314086577e+13

12 2.47927778784e+13

13 2.43404436887e+13
14 2.1522702068e+13

15 8.91765000665e+12
16 1.4580927737e+13

17 8.57823507015e+12

12 2.31466520037e+13

13 1.91856542103e+13
14 1.49332023312e+13

15 1.3506302755e+13

16 8.7757678836e+12
17 1.60075548613e+13

12 2.5187054064e+13

13 1.83498739266e+13

14 1.96076943156e+13
15 1.41725666214e+13

16 1.41986217172e+13
17 8.46755159547e+12

12 2.38234539188e+13
13 1.85101922046e+13

14 1.91732620477e+13
15 8.91769396968e+12

16 8.64876051004e+12

17 8.54677681587e+12

12 2.5187054064e+13
13 2.04031903147e+13

14 1.95213876047e+13

15 1.93000628589e+13
16 2.07670831868e+13

17 8.47797102908e+12

12 2.39830397362e+13

13 2.00248378195e+13
14 1.34867337672e+13

15 2.09299321238e+13
16 1.32266735736e+13

17 8.50857884943e+12

>>> for trials in range(10): #Try ten times to find best result
... for clusters in range(12, 16): #Only look in interesting range
... model = KMeans.train(rdd3, clusters)
... cost = model.computeCost(rdd3)
... centers = model.clusterCenters #Let’s grab cluster centers
... if cost<1e+13: #If result is good, print it out
... print clusters, cost
... for coords in centers:
... print int(coords[0]), int(coords[1])
... break
...

Find the Centers

15 8.91761561687e+12

852058 157685
606574 574455

320602 161521

139395 558143
858947 546259

337264 562123
244654 847642

398870 404924

670929 862765
823421 731145

507818 175610
801616 321123

617926 399415

417799 787001
167856 347812

15 8.91765957989e+12
670929 862765

139395 558143

244654 847642
852058 157685

617601 399504
801616 321123

507818 175610

337264 562123
858947 546259

823421 731145
606574 574455

167856 347812

398555 404855
417799 787001

320602 161521

Fit?

0

100000

200000

300000

400000

500000

600000

700000

800000

900000

1000000

0 200000 400000 600000 800000 1000000

Series1

16 Clusters

0

100000

200000

300000

400000

500000

600000

700000

800000

900000

1000000

0 200000 400000 600000 800000 1000000

Series1

0

100000

200000

300000

400000

500000

600000

700000

800000

900000

1000000

0 200000 400000 600000 800000 1000000

Series1

[urbanic@r005 Clustering]$ pyspark
Python 2.7.11 (default, Feb 23 2016, 17:47:07)
[GCC 4.8.5 20150623 (Red Hat 4.8.5-4)] on linux2
Type "help", "copyright", "credits" or "license" for more information.Welcome to

____ __
/ __/__ ___ _____/ /__
_\ \/ _ \/ _ `/ __/ '_/
/__ / .__/_,_/_/ /_/_\ version 2.1.0

/_/

Using Python version 2.7.11 (default, Feb 23 2016 17:47:07)
SparkSession available as 'spark'.
>>>
>>>
>>> execfile("clustering.py")
1 5.76807041184e+14
2 3.73234816206e+14
3 2.13508993715e+14
4 1.38250712993e+14
5 1.2632806251e+14
6 7.97690150116e+13
7 7.14156965883e+13
8 5.7815194802e+13
...
...
...

Run My Programs Or Yours
execfile()

If you have another session window open on
bridge’s login node, you can edit this file, save it
while you remain in the editor, and then run it again
in the python shell window with execfile().

You do not need this second session to be on a
compute node. Do not start another interactive
session.

Shakespeare, a Data Analytics Favorite

Applying data analytics to the works of Shakespeare has become all the rage. Whether determining the legitimacy of
his authorship (it wasn’t Marlowe) or if Othello is actually a comedy (perhaps), it is amazing how much publishable
research has sprung from the recent analysis of 400 year old text.

We’re going to do some exercises here using a text file containing all of his works.

Firing Up The Hands-On
Let’s make sure all is well with our hands-on environment first.

Grab a node

interact

We have hundreds of packages on Bridges. They each have many paths and variables that need to be set for their own proper environment, and they are
often conflicting. We shield you from this with the wonderful modules command. You can load the two packages we will be using as

Spark

module load spark

Tensorflow (Not now! But later)

module load tensorflow/1.5_gpu

Copy over our exercise data, and move into an interesting starting point

cp –r ~training/BigData .

cd BigData/Shakespear

Start up Spark

pyspark

You may see a lot of noise (warning! Warning!) which you should ignore as long as you get a nice “Wecome to Spark” message at the end.

Some Simple Problems
We have an input file, Complete _Shakespeare.txt, that you can also find at http://www.gutenberg.org/ebooks/100.

If you are starting from scratch on the login node:

1) interact 2) cd BigData/Shakespeare 3) module load spark 4) pyspark

...

>>> rdd = sc.textFile("Complete_Shakespeare.txt")

Let’s try a few simple exercises.

1) Count the number of lines

2) Count the number of words (hint: Python "split" is a workhorse)

3) Count unique words

4) Count the occurrence of each word

5) Show the top 5 most frequent words

These last two are a bit more challenging. One approach is
to think “key/value”. If you go that way, think about which
data should be the key and don’t be afraid to swap it
about with value. This is a very common manipulation
when dealing with key/value organized data.

http://www.gutenberg.org/ebooks/100

>>> lines_rdd = sc.textFile("Complete_Shakespeare.txt")

>>>
>>> lines_rdd.count()

124787

>>>
>>> words_rdd = lines_rdd.flatMap(lambda x: x.split())

>>> words_rdd.count()
904061

>>>

>>> words_rdd.distinct().count()
67779

>>>

Some Simple Answers

Next, I know I'd like to end up with a pair RDD of sorted word/count pairs:

(23407, 'the'), (19540,'I'), (15682, 'to'), (15649, 'of') ...

Why not just words_rdd.countByValue()? We get back a massive Python unsorted
dictionary of results:

... 1, u'precious-princely': 1, u'christenings?': 1, 'empire': 11, u'vaunts': 2, u"Lubber's": 1,
u'poet.': 2, u'Toad!': 1, u'leaden': 15, u"captains'": 1, u'leaf': 9, u'Barnes,': 1, u'lead': 101,
u"'Hell": 1, u'wheat,': 3, u'lean': 28, u'Toad,': 1, u'trencher!': 2, u'1.F.2.': 1, u'leas': 2,

u'leap': 17, ...

Where to go next? Sort this in Python or try to get back into an RDD? If this is truly BIG
data, we want to remain as an RDD until our final results.

>>> lines_rdd = sc.textFile("Complete_Shakespeare.txt")

>>>
>>> lines_rdd.count()

124787

>>>
>>> words_rdd = lines_rdd.flatMap(lambda x: x.split())

>>> words_rdd.count()
904061

>>>

>>> words_rdd.distinct().count()
67779

>>>
>>> key_value_rdd = words_rdd.map(lambda x: (x,1))

>>>

>>> key_value_rdd.take(5)
[(u'The', 1), (u'Project', 1), (u'Gutenberg', 1), (u'EBook', 1), (u'of', 1)]

>>>
>>> word_counts_rdd = key_value_rdd.reduceByKey(lambda x,y: x+y)

>>> word_counts_rdd.take(5)

[(u'fawn', 11), (u'considered-', 1), (u'Fame,', 3), (u'mustachio', 1), (u'protested,', 1)]
>>>

>>> flipped_rdd = word_counts_rdd.map(lambda x: (x[1],x[0]))
>>> flipped_rdd.take(5)

[(11, u'fawn'), (1, u'considered-'), (3, u'Fame,'), (1, u'mustachio'), (1, u'protested,')]

>>>
>>> results_rdd = flipped_rdd.sortByKey(False)

>>> results_rdd.take(5)
[(23407, u'the'), (19540, u'I'), (18358, u'and'), (15682, u'to'), (15649, u'of')]

>>>

Some Harder Answers

Turn these into k/v pairs

Reduce to get words counts

Flip keys and values

so we can sort on

wordcount instead of

words.

results_rdd = lines_rdd.flatMap(lambda x: x.split()).map(lambda x: (x,1)).reduceByKey(lambda x,y: x+y).map(lambda x: (x[1],x[0])).sortByKey(False)

Things data
scientists do.

Some Homework Problems

To do research-level text analysis, we generally want to clean up our input. Here are some of the kinds of things you
could do to get a more meaningful distinct word count.

1) Remove punctuation. Often punctuation is just noise, and it is here. Do a Map and/or Filter (some punctuation is
attached to words, and some is not) to eliminate all punctuation from our Shakespeare data. Note that if you are
familiar with regular expressions, Python has a ready method to use those.

2) Remove stop words. Stop words are common words that are also often uninteresting ("I", "the", "a"). You can
remove many obvious stop words with a list of your own, and the MLlib that we are about to investigate has a
convenient StopWordsRemover() method with default lists for various languages.

3) Stemming. Recognizing that various different words share the same root ("run", "running") is important, but not so
easy to do simply. Once again, Spark brings powerful libraries into the mix to help. A popular one is the Natural
Language Tool Kit. You should look at the docs, but you can give it a quick test quite easily:

import nltk
from nltk.stem.porter import *
stemmer = PorterStemmer()
stems_rdd = words_rdd.map(lambda x: stemmer.stem(x))

