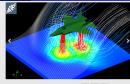
Scientific Visualization: VisIt

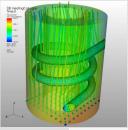
Marcelo Ponce

2018 International HPC Summer School

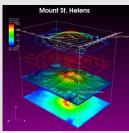

Ostrava, Czeck Republic - July 2018

Outline

- Scientific Visualization
 - 2D/3D Visualization Generalities
 - Visualization Pipeline
- VisIt
 - Generalities
 - Viz. Pipelines Basics
 - Tutorial
 - Dataset Exploration
 - Vector Fields Visualizations
 - High Quality Plots
 - Professional Quality Plots
 - Movies Generation
 - Remote Vizualization
- Summary
- Further Resources
 - References

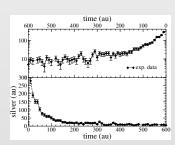

- Scientific Visualization
 - 2D/3D Visualization Generalities
 - Visualization Pipeline
- VisIt
 - Generalities
 - Viz. Pipelines Basics
 - Tutorial
 - Dataset Exploration
 - Vector Fields Visualizations
 - High Quality Plots
 - Professional Quality Plots
 - Movies Generation
 - Remote Vizualization
- 3 Summary
- 4 Further Resources
 - References

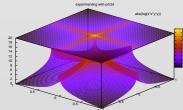
- Visualization is the process of mapping scientific data into "visual form"
- Much easier to understand images than a large set of numbers
- For interactive data exploration, debugging, communication with peers



ParaView

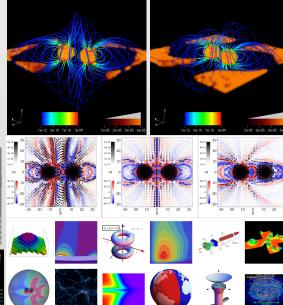
Scientific Visualization: VisIt


1D plotting vs. 2D/3D visualization


→ 1D plotting

plotting functions of one variable, 1D tabulated data (eg. gnuplot, xmgr, or Python's matplotlib library)

→ 2D/3D visualization


displaying multi-dimensional datasets, typically data on 2D/3D structured grids or on unstructured meshes (that have some topology in 2D/3D)

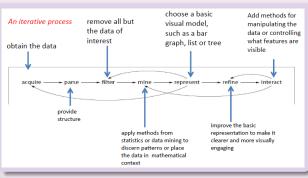
- represent data
- plotting
- visualization techniques
- analyze/explore
- communicate (publications/talks)
- make it look nice?

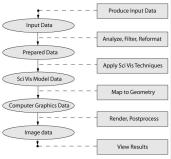
2D/3D visualization packages

- gnuplot: command-driven interactive 2d and 3d plotting program
- GraphViz: represent strucrural information as diagrams of abstract graphs and networks
- ► HDFview: visual tool for browsing and editing HDF4 and HDF5 files
- → ImageMagick: manipulation of image
- ▶ Molden: pre/post-processing for molecular and electronic structures
- → OpenCV: library for real time computer vision
- ▶ ParaView: Parallel visualization application
- ➡ SciLab: open source platform for numerical computation
- ▼ VisIt: Visualization Tool for HPC
- **► XCrysDen**: Crystaline and Molecular Structure Visualization
- yt: python-based package for visualization of AMR datasets
- **▶ VMD**: Visualization for Molecular Dynamics
- openDX: very old, not mantained package, but really

nice approach to visualization process (modules)

2D/3D visualization packages


General Features


- visualize scalar and vector fields
- structured and unstructured meshes in 2D and 3D, particle data, polygonal data, irregular topologies
- ability to handle very large datasets (GBs to TBs)
- ability to scale to large ($10^3 10^5$ cores) computing facilities
- iteractive manipulation
- support for scripting, common data formats, parallel I/O
- open-source, multi-platform, and general-purpose

Data Visualization Process

- Scientific Visualization Techniques
- contours/isosurfaces, clips, thresholds, glyphs, streampseducolors, lines,

Map to Geometry

- → scalars, vectors, tensors
- → 1D, 2D, 3D
- → mesh/grid

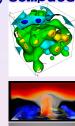
Render/PostProcess

Visualization Toolkit (VTK)

- Open source, multiplatform
- Supports distributed computation models
- Extensible modular architecture
- Available for 3D computer graphics, image processing and visualization
- Collection of C++ libraries

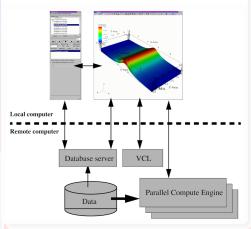
- Leveraged by many applications
- Divided into logical areas
 - Filtering
 - Information Visualization
 - Volume Rendering
- Cross platform, using OpenGL
- Wrapped in Python, Tool Command Language (Tcl) and Java
- ParaView and VisIt are end-user applications with support:
 - parallel Data Archiving/Reading/Processing/Rendering
 - → single node, Client-Server, MPI Cluster Rendering

- Scientific Visualization
 - 2D/3D Visualization Generalities
 - Visualization Pipeline
- VisIt
 - Generalities
 - Viz. Pipelines Basics
 - Tutorial
 - Dataset Exploration
 - Vector Fields Visualizations
 - High Quality Plots
 - Professional Quality Plots
 - Movies Generation
 - Remote Vizualization
- Summary
- 4 Further Resources
 - References



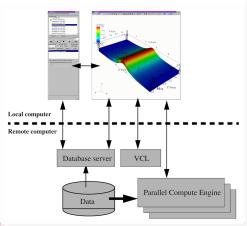
https://wci.llnl.gov/simulation/computercodes/visit

- Developed by the DOE Advanced Simulation and Computing Initiative, to visualize results of terascale simulations, first release fall of 2002 - mantained by LLNL
- v2.13.2 available as source and binary for Linux/Mac/Windows
- Over 80 visualization features (contour. mesh, slice, volume, molecule, ...)
- Reads over 110 different file formats
- Interfaces with C++, Python, and Java
- Uses MPI for distributed-memory parallelism on HPC clusters



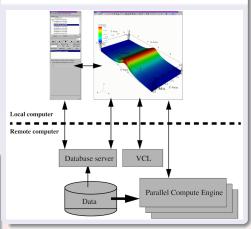
- can run: locally, remotelly, client/server mode
- interface pretty much looks the same on each platform
- can read over a 100 different data formats
- new database plugin readers can be developed
- Supported Mesh Types
- ▶ 1D Curves
- 2D/3D meshes: Rectilin ear, Curvilinear, Unstructured Points, AMR, Molecular, CSG

➡ VisIt Architecture



- can run: locally, remotelly, client/server mode
- interface pretty much looks the same on each platform
- can read over a 100 different data formats
- new database plugin readers can be developed
- Supported Mesh Types
- ▶ 1D Curves
- ▶ 2D/3D meshes: Rectilinear, Curvilinear, Unstructured, Points, AMR, Molecular, CSG

➡ VisIt Architecture



- can run: locally, remotelly, client/server mode
- interface pretty much looks the same on each platform
- can read over a 100 different data formats
- new database plugin readers can be developed
- Supported Mesh Types
- ▶ 1D Curves
- ▶ 2D/3D meshes: Rectilinear, Curvilinear, Unstructured, Points, AMR, Molecular, CSG

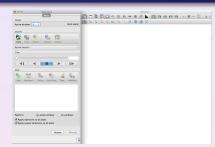
➤ VisIt Architecture

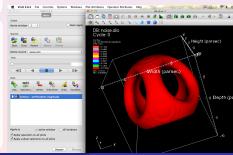
VisIt: Multiple Interfaces

- GUI (graphical user interface)
- Python programming interface
- Java programming interface
- C++ programming interface

- Use multiple interfaces simultaneously
- ⇒ Use VisIt as an application or a library
- → C++, Python, Java interfaces allow other applications to control VisTt

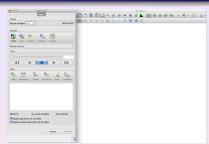
VisIt: Multiple Interfaces

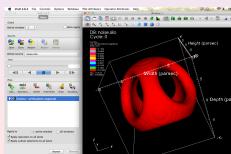

- GUI (graphical user interface)
- Python programming interface
- Java programming interface
- C++ programming interface


- ▶ Use multiple interfaces simultaneously
- ⇒ Use VisIt as an application or a library
- → C++, Python, Java interfaces allow other applications to control VisIt

VisIt: GUI

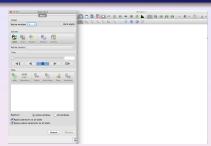
- **⇒** GUI
- → Select files to visualize
- Create and manage plots
- Set plot attributes
- Add operators
- → Set look and props. for visualization
- ➡ Viewer
- display all of the data being visualized
- Mouse navigation
- up to 16 vis windows
- Popup menu
- Toolbars

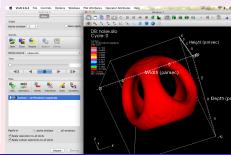




VisIt: GUI

- **→** GUI
- → Select files to visualize
- Create and manage plots
- → Set plot attributes
- Add operators
- → Set look and props. for visualization
- ➡ Viewer
- display all of the data being visualized
- Mouse navigation
- up to 16 vis windows
- Popup meni
- Toolhars

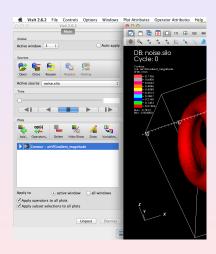




VisIt: GUI

→ GUI

- → Select files to visualize
- → Create and manage plots
- → Set plot attributes
- Add operators
- → Set look and props. for visualization
- → Viewer
- display all of the data being visualized
- Mouse navigation
- up to 16 vis windows
- Popup menu
- → Toolbars

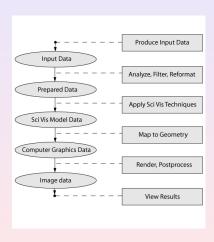

VisIt: GUIs

- Main window in GUI
- Access other important windows
- → Open files
- → Set animation time state
- → Set active window
- Create and manage filters (pipeline)
- Displays progress from compute engine
- Really useful ones
 - → Appy to... check-boxes

VisIt: GUIs

- Main window in GUI
- Access other important windows
- → Open files
- → Set animation time state
- → Set active window
- Create and manage filters (pipeline)
- Displays progress from compute engine
- Really useful ones
 - → Appy to... check-boxes

Vis**I**t: GUIs


- Main Menu File Controls **Options** Windows Plot Attributes Operator Attributes Help
- Active window 1 \$ Cycle: 0 Apply to ✓ Apply operators to all plots ✓ Apply subset selections to all plots Unpost Dismiss

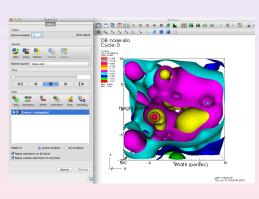
→ Visualization Toolbar

VisIt: Visualization Pipeline

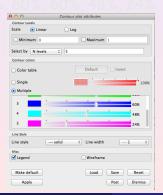
- Open database (or file)
- Create a plot
- Set plot attributes
- Apply operators to plot to modify data
- Set operator attributes
- Compute engine generates plot
- Plot displayed in vis window
- iterate//repeat...

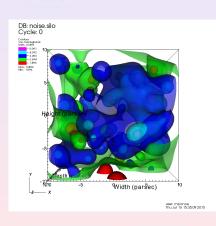
- File → Open file...

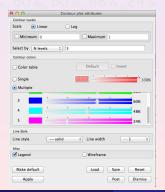

 → choose data file ("noise.silo")
- Become available
 - → Active source: "noise.silo"
 - Add button
 - File → File information...

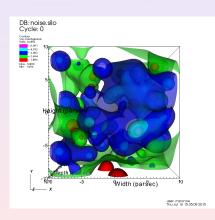


- ► File → Open file...
 - → choose data file ("noise.silo")
- ▶ Become available
 - → Active source: "noise silo"
 - → Add button
 - File → File information...



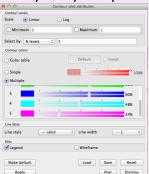

- File \rightarrow Open file...
 - → choose data file ("noise.silo")
- ▶ Become available
 - → Active source: "noise silo"
 - → Add button
- File → File information...

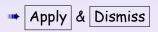

double-click on Contour-hardyglobal

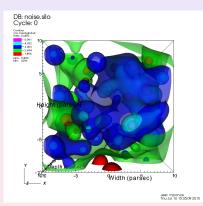


- double-click on Contour-hardyglobal
- under Select by, choose

N levels = 5 Enter

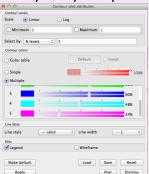


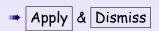


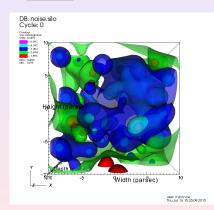

- double-click on Contour-hardyglobal
- under Select by, choose

N levels = 5 Enter

Change opacity levels, eg: 100%, 60%, 60%, 48%, 24%

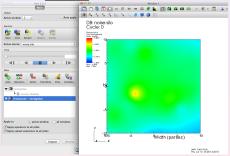


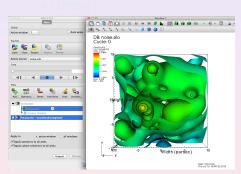

Hide/Show or Delete


- double-click on Contour-hardyglobal
- under Select by, choose

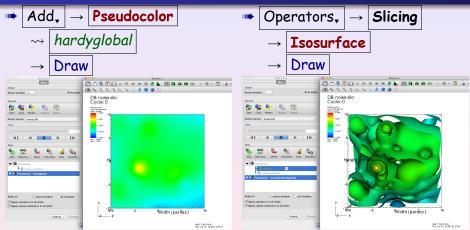
N levels = 5 Enter

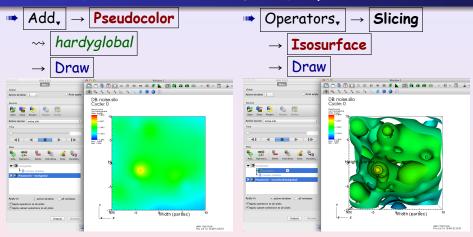
Change opacity levels, eg: 100%, 60%, 60%, 48%, 24%





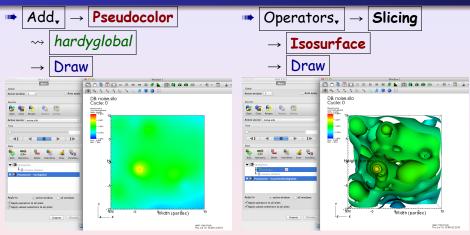
Hide/Show or Delete


WisIt: PseudoColor & IsoSurfaces

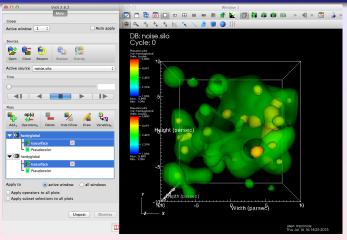


WisIt: PseudoColor & IsoSurfaces

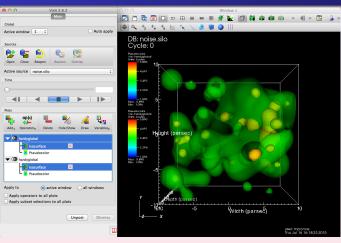
VisIt: PseudoColor & IsoSurfaces



- click > to expand, double click on [Isosurface]
 - → under Select by, choose | Percent (s) | = 50 | Enter & | Dismiss

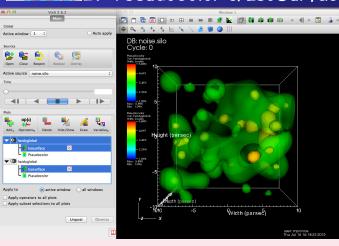


VisIt: PseudoColor & IsoSurfaces



- click > to expand, double click on [Isosurface]
 - → under Select by, choose | Percent (s) | = 50 | Enter & | Dismiss
- change the opacity of [Pseudocolor]

VISIt: PseudoColor & IsoSurfaces



It: PseudoColor & IsoSurfaces

- unselect the [Apply ...] check-boxes
- add 1 more Pseudocolor +Isosurface. w/Percent(s)=80 & adjust its opacity

Visit: PseudoColor & IsoSurfaces

- unselect the [Apply ...] check-boxes
- add 1 more
 Pseudocolor
 +Isosurface,
 w/Percent(s)=80
 & adjust its
 opacity

- clipping → select/check the [Apply...] boxes
- - → choose combinations of ≠ planes to modify the «clip»

VisIt:

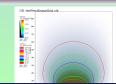
IsIt: General Remarks

- operators/plots can be removed **Delete** -or- hidden **Hide/Show**
- save your work frequently: $|File| \rightarrow |Save session...$
- * Restoring a previous session
- ▶ $[File] \rightarrow [Restore session...]$ loads the previous state of the given session (that needs to be specifically saved)
- ► [rile] → [Restore session w/sources...]
 extremely useful for re-identifying datasets that could have been moved or renamed

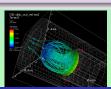
Be aware, that VisIt, by default won't save your work (session) nor ask you when you try to exit the program!

VisIt: General Remarks

- operators/plots can be removed **Delete** -or- hidden **Hide/Show**
- lack save your work **frequently**: File \rightarrow Save session...
- * Restoring a previous session
- File \rightarrow Restore session... loads the previous state of the given session (that needs to be specifically saved)


Be aware, that VisIt, by default won't save your work (session) nor ask you when you try to exit the program!

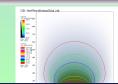
VisIt: General Remarks


- operators/plots can be removed **Delete** -or- hidden **Hide/Show**
- save your work frequently: File \rightarrow Save session...
- * Restoring a previous session
- File \rightarrow Restore session... loads the previous state of the given session (that needs to be specifically saved)
- ightharpoonup File ightharpoonup Restore session w/sources... extremely useful for re-identifiying datasets that could have been moved or renamed

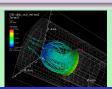
Be aware, that VisIt, by default won't save your work (session) nor ask you when you try to exit the program!

- ▶ Load some of the other datasets: [eg. "testRectilinear-Grid.vtk", "headsq.vtk", "disk_out_ref.ex2", ...] -or- your own data!!!
- Try to explore the data and visualize it, using some of the tools we have discussed
- ▶ If you have used other visualization packages, compare how easy and whether it is possible or not, to obtain similar results, let's say with ParaView or VAPOR for instance...
- ▶ also which one, results more intuitive, elegant, useful for you and your research

Off heading of



2018 IHPCSS - Ostrava

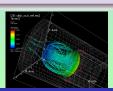

Scientific Visualization: VisIt

M.Ponce (SciNet/UofT)

- ▶ Load some of the other datasets: [eg. "testRectilinear-Grid.vtk", "headsq.vtk", "disk_out_ref.ex2", ...] -or- your own data!!!
- Try to explore the data and visualize it, using some of the tools we have discussed
- ▶ If you have used other visualization packages, compare how easy and whether it is possible or not, to obtain similar results, let's say, with ParaView or VAPOR for instance...
- ▶ also which one, results more intuitive, elegant, useful for you and your research

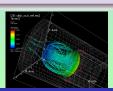
CRI Freezing v9

2018 IHPCSS - Ostrava


Scientific Visualization: VisIt

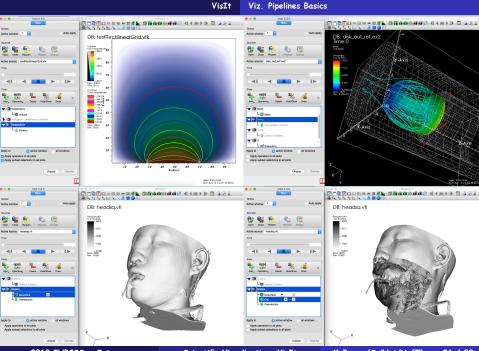
M.Ponce (SciNet/UofT)

- ▶ Load some of the other datasets: [eg. "testRectilinear-Grid.vtk", "headsq.vtk", "disk_out_ref.ex2", ...] -or- your own data!!!
- Try to explore the data and visualize it, using some of the tools we have discussed
- ▶ If you have used other visualization packages, compare how easy and whether it is possible or not, to obtain similar results, let's say, with ParaView or VAPOR for instance...
- ▶ also which one, results more intuitive, elegant, useful for you and your research


2018 IHPCSS - Ostrava

Scientific Visualization: VisIt

- ▶ Load some of the other datasets: [eg. "testRectilinear-Grid.vtk", "headsq.vtk", "disk_out_ref.ex2", ...] -or- your own data!!!
- Try to explore the data and visualize it, using some of the tools we have discussed
- ▶ If you have used other visualization packages, compare how easy and whether it is possible or not, to obtain similar results, let's say, with ParaView or VAPOR for instance...
- ▶ also which one, results more intuitive, elegant, useful for you and your research



2018 IHPCSS - Ostrava

Scientific Visualization: VisIt

It: Slices

Slicing Isosurfaces

- lacktriangledown Operators, lacktriangledown lacktriangle
- double-click on [Slice]
 - → try choosing different axes & Project to 2D
 - try also the other types of slices

VisIt: Vector Field representations - Glyphs

- → Glyphs
- \rightarrow Add, \rightarrow Vector \rightarrow airVfGradient
 - → Apply & Dismiss
- double-click on [Vector]
 - ⇒ set Vector amount \sim 1000
 - → more properties in [Data] & [Glyph]

operators

VisIt: Vector Field representations -Streamlines

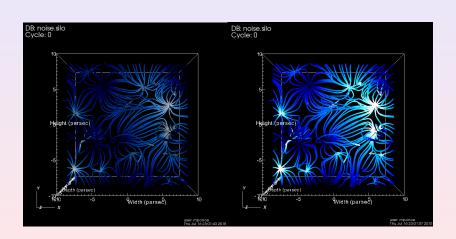
- Streamlines
- | Add, | → | Pseudocolor |
- IntegralCurve $| \rightsquigarrow |$ grad
- double-click on [IntegralCurve]
 - ⇒ set Source type ~> plane
 - → increase samples/distance along axes~15/20
 - → Integration direction \rightsquigarrow both
 - - → [Data] \lord bluehot → Apply

operators

VisIt: Vector Field representations – Streamlines

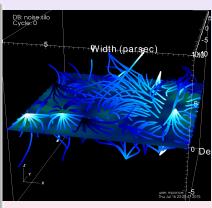
- Streamlines
- Add, → Pseudocolor
- IntegralCurve | → | grad
- double-click on [IntegralCurve]
 - ⇒ set Source type ~> plane
 - → increase samples/distance along axes~15/20
 - → Integration direction \rightsquigarrow both
- double-click on [Pseudocolor]
 - → in [Geommetry], Line type ~> Tubes, w/Radius ~> 0.005

operators

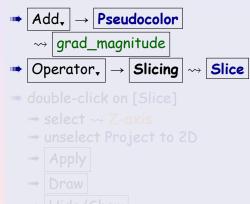

VisIt: Vector Field representations Streamlines

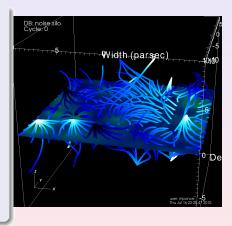
- → Streamlines
- Add, → Pseudocolor

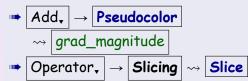
IntegralCurve | → | grad


- double-click on [IntegralCurve]
 - → set Source type ~> plane
 - → increase samples/distance along axes~15/20
 - → Integration direction \rightsquigarrow both
- double-click on [Pseudocolor]
 - → in [Geommetry], Line type ~> Tubes, w/Radius ~> 0.005
 - → [Data] --> bluehot --> Apply

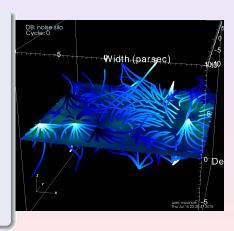
VisIt: Vector Field representations – Streamlines




VisIt: Slices



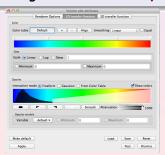
VisIt: Slices

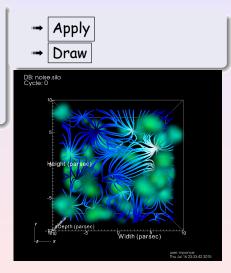


VisIt: Slices

- double-click on [Slice]
 - → select ~> Z-axis
 - → unselect Project to 2D
 - → Apply
 - → Draw
 - → Hide/Show

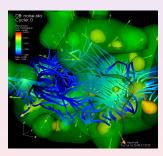
Visit: Volume Rendering

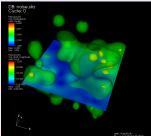

- $\begin{array}{c} \text{Add}_{\bullet} \rightarrow \boxed{\text{Volume}} \\ \\ \sim \boxed{\text{grad_magnitude}} \end{array}$
- double-click on [Volume
 - -- click on 1D Transfer Function
 - Monter Option | Manager |

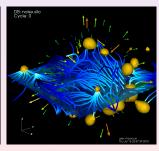


Apply

It: Volume Rendering


- double-click on [Volume]
 - → click on 1D Transfer Function
 - -- change Transfer Fn/Opacity





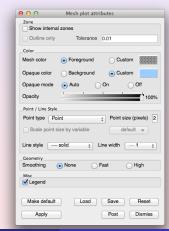
Wilt: Aesthetics & Final Products

- Legends, axes, ...
- Controls → Annotation...
- ⇒ "hard-copies": images, ...
- File → Save Window

VisIt: Aneurism DataSet

This tutorial uses the aneurysm dataset

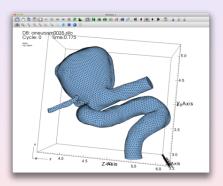
- Launch VisIt
- ▶ In VisIt's GUI, under the Sources section, click Open
- Navigate your file system to select the "aneurysm.visit" file.
- Alternatively, navigate into the aneurism directory and load all the "*.silo" files.


VisIt: Plotting Mesh Topology

 First we will examine the finite element mesh used in the blood flow simulation.

▶ click draw

 Expand the Mesh plot object and double click to open the Mesh Plot Attributes Window



VisIt: Plotting Mesh Topology

Experiment with settings for:

- Mesh color
- Opaque color
- Opaque mode
- Show internal zones
- You will need to click Apply to commit the settings to your plot.

VisIt: Query Mesh Properties

VisIt's Query interface provides several quantitative data summarization operations.

- [Controls Menu] \rightarrow Query
- Select NumZones and click Query
 number of elements in the mesh
- Select NumNodes and click Querynumber of vertices in the mesh

Pop quiz

- How many elements are used to construct the mesh?
- How many vertices are used to construct the mesh?

VisIt: Query Mesh Properties

VisIt's Query interface provides several quantitative data summarization operations.

- [Controls Menu] \rightarrow Query
- Select NumZones and click Query number of elements in the mesh
- Select NumNodes and click Querynumber of vertices in the mesh

Pop quiz

- How many elements are used to construct the mesh?
- How many vertices are used to construct the mesh?

Vis

VisIt: Examining and Identifying Data Fields

In addition to the mesh topology, this dataset provides two mesh fields:

- A scalar field pressure, associated with the mesh vertices.
- A vector field velocity, associated with the mesh vertices.

File Menu] → File information..

VisIt automatically defines an expression that allows us to use the magnitude of the velocity vector field as a scalar field on the mesh

the result of the expression is a new field named velocity magnitude

VisIt: Examining and Identifying Data Fields

In addition to the mesh topology, this dataset provides two mesh fields:

- A scalar field pressure, associated with the mesh vertices.
- A vector field velocity, associated with the mesh vertices.
- ▶ [File Menu] \rightarrow File information...

VisIt automatically defines an expression that allows us to use the magnitude of the velocity vector field as a scalar field on the mesh

→ the result of the expression is a new field named velocity magnitude

VisIt: Examining and Identifying Data Fields

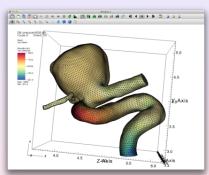
In addition to the mesh topology, this dataset provides two mesh fields:

- A scalar field pressure, associated with the mesh vertices.
- A vector field velocity, associated with the mesh vertices.
- ▶ [File Menu] \rightarrow File information...

VisIt automatically defines an expression that allows us to use the magnitude of the velocity vector field as a scalar field on the mesh

the result of the expression is a new field named velocity magnitude

We will use **Pseudocolor Plots** to examine the pressure and velocity magnitude fields.

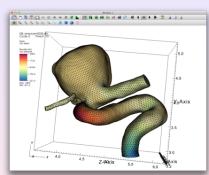


Experiment with

- ▶ setting the Pseudocolor plot limits
- ▶ hiding/showing the Mesh plot

We will use **Pseudocolor Plots** to examine the pressure and velocity_magnitude fields.

- Expand the Pseudocolor plot and double click to bring up the Pseudocolor Plot Attributes Window.
- Change the color table to
 Spectral and check the Invert button
- ► Click Apply
- ▶ [Plot List] click Draw



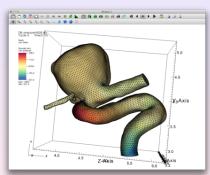
Experiment with:

- setting the Pseudocolor plot lim its
- hiding/showing the Mesh plot

We will use **Pseudocolor Plots** to examine the pressure and velocity magnitude fields.

- Expand the Pseudocolor plot and double click to bring up the Pseudocolor Plot Attributes Window.
- Change the color table to
 Spectral and check the Invert button
- Click Apply
- ▶ [Plot List] click Draw
- ► [Time Slider] click Play / Stop

Experiment with:


setting the Pseudocolor plot lim its

hiding/showing the Mesh plot

We will use Pseudocolor Plots to examine the pressure and velocity_magnitude fields.

- $|Add| \rightarrow |Pseudocolor| \rightarrow |Add| \rightarrow |Pseudocolor| \rightarrow |Pse$ Pressure
- Expand the Pseudocolor plot and double click to bring up the Pseudocolor Plot Attributes Window.
- Change the color table to Spectral and check the Invert button
- Click Apply
- ▶ [Plot List] click Draw

▶ [Time Slider] click Play / Stop

Experiment with:

- setting the Pseudocolor plot limits
- hiding/showing the Mesh plot

Query the Maximum Pressure Over Time

We can use the pressure field to extract the heart beat signal. We want to find the maximum pressure value across the mesh elements at each time step of our dataset.

Query the Maximum Pressure Over Time

We can use the pressure field to extract the heart beat signal. We want to find the maximum pressure value across the mesh elements at each time step of our dataset.

VisIt provides a Query over time mechanism that allows us to

extract this data.

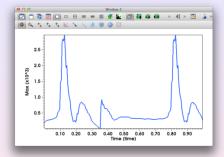
Query the Maximum Pressure Over Time

We can use the pressure field to extract the heart beat signal. We want to find the maximum pressure value across the mesh elements at each time step of our dataset.

VisIt provides a Query over time mechanism that allows us to

extract this data.

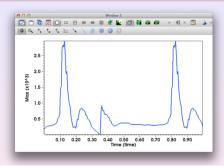
 First, we need to set our query options to use time as the independent variable for our query: [Controls Menu] →
 Query over time options


- Select time
- click Apply and dismiss the window

Now we can execute the **Max query** on all the time steps and collect the results into a curve.

[Plot List] Click to make sure the **Pseudocolor plot** is active [Controls Menu] → Queries

This will process the simulation output files and create a new window with a curve that contain

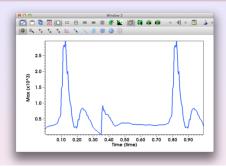


- How many heart beats does this dataset cover?
- ▶ Estimate the number of beats per minute of the simulated heart.

Now we can execute the **Max query** on all the time steps and collect the results into a curve.

- ► [Plot List] Click to make sure the **Pseudocolor plot** is active
- ightharpoonup [Controls Menu] ightharpoonup Queries
- ▶ Select Max
- ▶ check Do Time Query

This will process the simulation output files and create a new window with a curve that contains the maximum pressure value at eacl time.

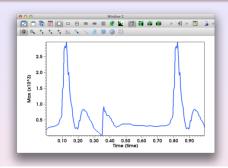


- How many heart beats does this dataset cover?
- Estimate the number of beats per minute of the simulated heart.

Now we can execute the **Max query** on all the time steps and collect the results into a curve.

- [Plot List] Click to make sure the Pseudocolor plot is active
- ▶ [Controls Menu] \rightarrow Queries
- ▶ Select Max
- check Do Time Query

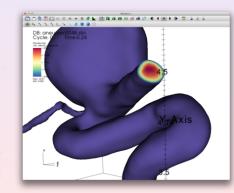
This will process the simulation output files and create a new window with a curve that contains the maximum pressure value at each time.



- How many heart beats does this dataset cover?
- ▶ Estimate the number of beats per minute of the simulated heart.

Now we can execute the **Max query** on all the time steps and collect the results into a curve.

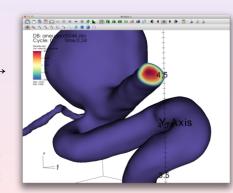
- ► [Plot List] Click to make sure the **Pseudocolor plot** is active
- ▶ [Controls Menu] \rightarrow Queries
- Select Max
- check Do Time Query


This will process the simulation output files and create a new window with a curve that contains the maximum pressure value at each time.

- How many heart beats does this dataset cover?
- ▶ Estimate the number of beats per minute of the simulated heart.

Contours and Sub-volumes of High Velocity

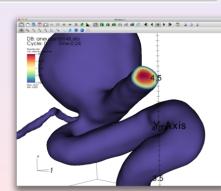
Next, we will create a Pseudocolor plot to look at the magnitude of the velocity vector field.



Contours and Sub-volumes of High Velocity

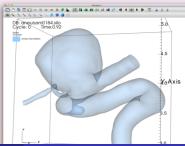
Next, we will create a **Pseudocolor plot** to look at the magnitude of the velocity vector field.

- First, Hide / Delete previous plots
- Add a Pseudocolor Plot of the velocity_magnitude: [Plot List] →


Add → Pseudocolor → velocity_magnitude

Contours and Sub-volumes of High Velocity

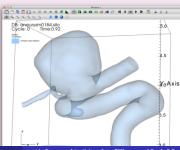
Next, we will create a **Pseudocolor plot** to look at the magnitude of the velocity vector field.


- First, Hide / Delete previous plots
- Add a Pseudocolor Plot of the velocity_magnitude: [Plot List] →
 Add → Pseudocolor →
 velocity_magnitude
- Open (double-click) Pseudocolor Plot Attributes Window, and set the color table options as before
- ▶ [Plot List] → Draw

Notice that the velocity at the surface of the mesh is **zero**. To get a better understanding of the flow inside the mesh, we will use operators to extract regions of *high blood flow*.

Creating a Semi-Transparent Exterior Mesh Plot

When looking at features inside the mesh, it helps to have a partially transparent view of the whole mesh boundary for reference. We will add a Subset plot to create this view of the mesh boundary.

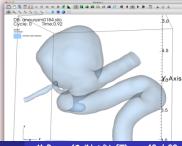


Notice that the velocity at the surface of the mesh is **zero**. To get a better understanding of the flow inside the mesh, we will use operators to extract regions of *high blood flow*.

Creating a Semi-Transparent Exterior Mesh Plot

When looking at features inside the mesh, it helps to have a partially transparent view of the whole mesh boundary for reference. We will add a Subset plot to create this view of the mesh boundary.

- Plot List] → UncheckApply operators to all plots
- Add a Subset Plot of the mesh: [Plot List] → Add → Subset → Mesh

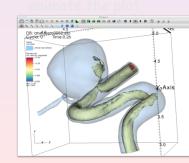


Notice that the velocity at the surface of the mesh is **zero**. To get a better understanding of the flow inside the mesh, we will use operators to extract regions of *high blood flow*.

Creating a Semi-Transparent Exterior Mesh Plot

When looking at features inside the mesh, it helps to have a partially transparent view of the whole mesh boundary for reference. We will add a Subset plot to create this view of the mesh boundary.

- Plot List] → UncheckApply operators to all plots
- ▶ Add a **Subset Plot** of the *mesh*: [Plot List] \rightarrow Add \rightarrow **Subset** \rightarrow Mesh
- Open (double-click) Subset Plot Attributes Window: change color to LightBlue, Opacity → 25%, hit Apply



VisIt:

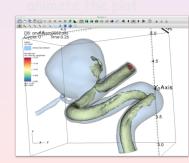
VisIt: Analizing Scalar Fields

Contours of High Velocity

Now we will extract **contour surfaces** at *high velocity* values using the **IsoSurface Operator**

VisT

VisIt: Analizing Scalar Fields


Contours of High Velocity

Now we will extract **contour surfaces** at *high velocity* values using the **IsoSurface Operator**

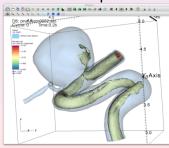
- ▶ [Plot List] → Click to select the Pseudocolor Plot
- Add an IsoSurface Operator:

$$[\mathsf{Plot}\;\mathsf{List}] \to \boxed{\mathsf{Operators}} \to \boxed{\mathsf{Slicing}}$$

→ IsoSurface

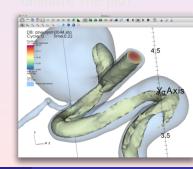
Contours of High Velocity

Now we will extract **contour surfaces** at *high velocity* values using the **IsoSurface Operator**


- Plot List] → Click to select the Pseudocolor Plot
- Add an IsoSurface Operator:

$$[\mathsf{Plot}\;\mathsf{List}] \to \boxed{\mathsf{Operators}} \to \boxed{\mathsf{Slicing}}$$

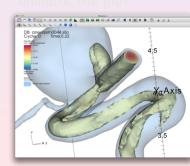
- \rightarrow IsoSurface
- Open (double-click) IsoSurface
 Operator Attributes Window:


set Select by \sim Value, and use 10 15 20; click Apply and dismiss the window

- ▶ [Plot List] → Draw
- use the [Time Slider] to animate the plot

Sub-Volumes of High Velocity

As an alternative to contours, we can also extract the sub-volume between two scalar values using the IsoVolume Operator

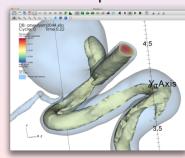


Sub-Volumes of High Velocity

As an alternative to *contours*, we can also extract the **sub-volume** between two scalar values using the **IsoVolume Operator**

- Remove / Hide the 'IsoSurface Operator'
- Add an IsoVolume Operator:

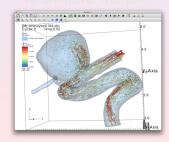
$$\begin{array}{c|c}
[Plot List] \to Operators \\
\hline
Selection \to IsoVolume
\end{array}$$



Sub-Volumes of High Velocity

As an alternative to *contours*, we can also extract the **sub-volume** between two scalar values using the **IsoVolume Operator**

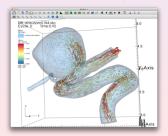
- Remove / Hide the 'IsoSurface Operator'
- Add an IsoVolume Operator:
 [Plot List] → Operators →
 Selection → IsoVolume
- Open (double-click) IsoVolume
 Operator Attributes Window:
 set the Lower Bound →10, and
 Upper Bound →20;
 - click Apply and dismiss the window


- ▶ [Plot List] → Draw
- use the [Time Slider] to animate the plot

It: Vector Fields Visualization

Plotting the Vector Field Directly with Glyphs

VisIt's vector plot renders a vector field at each time step as a collection of Arrow Glyphs. This allows us to see the direction of the vectors as well as their magnitude.



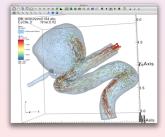
Visualization

Plotting the Vector Field Directly with Glyphs

VisIt's vector plot renders a vector field at each time step as a collection of Arrow Glyphs. This allows us to see the direction of the vectors as well as their magnitude.

Add a Vector Plot of velocity:

Plotting the Vector Field Directly with Glyphs


VisIt's vector plot renders a vector field at each time step as a collection of Arrow Glyphs. This allows us to see the direction of the vectors as well as their magnitude.

- Add a Vector Plot of velocity: [Plot List]: Add → Vector → velocity
- Open Vector Plot Attribute Window: [Vector Tab] set Stride →5, [Data Tab] set Color →Spectrum+Inv., [Glyphs Tab] set Scale →0.5, Arrow Body →cylinder,

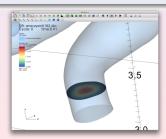
click Apply and dismiss the window

Geommetry Quality ~High

- ► [Plot List] → Draw
- use the [Time Slider] to animate the plot

It: Vector Fields Viz - streamlines

Examining features of the Flow Field with Streamlines


To explore the flow field further we will seed and advect a set of streamlines near the inflow of the artery.

Streamlines show the path massless tracer particles would take if advected by a static vector field.

To construct Streamlines, the first step is selecting a set of spatial locations that can serve as the initial seed points.

We want to center our seed points around the peak velocity value on a slice near the inflow of the artery.

To find this location, we query a sliced pseudocolor plot of the velocity_magnitude

Visit: Vector Fields Viz – streamlines

Slicing the blood flow:

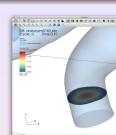
Add a Pseudocolor Plot of velocity_magnitude:

[Plot List]:

Add → Pseudocolor → velocity_magnitude

Open Pseudocolor Plot Attributes Wind

Add - Clies On water


[Plot List]: Operators - Slicing - slice

Den Since Operator Attributes w

involitial set of mogorial varia,

[Origin] set Point -3 3 3,

and dismiss the window

Wilt: Vector Fields Viz – streamlines

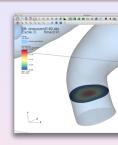
Slicing the blood flow:

Add a Pseudocolor Plot of velocity_magnitude: [Plot List]:

the money of 12 de

2018 IHPCSS - Ostrava

VEIt: Vector Fields Viz - streamlines


Slicing the blood flow:

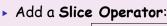
Add a Pseudocolor Plot of velocity_magnitude: [Plot List]:

► Open Pseudocolor Plot Attributes Window:

Add a Slice Operator:

[Plot List]:
$$\bigcirc$$
 Operators \rightarrow Slicing \rightarrow slice

🚺: Vector Fields Viz – streamlines

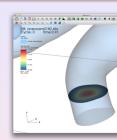

VisIt

Slicing the blood flow:

Add a Pseudocolor Plot of velocity_magnitude: [Plot List]:

$$\boxed{ \text{Add} } \rightarrow \boxed{ \textbf{Pseudocolor} } \rightarrow \boxed{ \text{velocity_magnitude} }$$

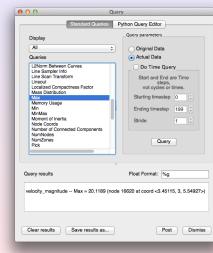
Open Pseudocolor Plot Attributes Window: [Data Tab] set Color → Spectral


[Plot List]:
$$\bigcirc$$
 Operators \rightarrow **Slicing** \rightarrow slice

▶ Open Slice Operator Attributes Window:

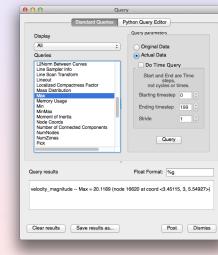
```
[Normal] set Orthogonal Y axis,

[Origin] set Point 3 3 3,


[Up Axis] uncheck Project to 2D click Apply and dismiss the window
```


Visit: Vector Fields Viz - streamlines

Query to find the Maximum Velocity on the Slice

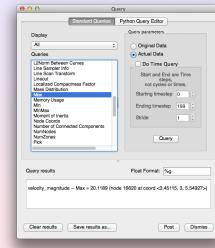


Visit: Vector Fields Viz - streamlines

Query to find the Maximum Velocity on the Slice

▶ [Plot List]: click on the pseudocolor velocity_magnitude to make is active

VIII: Vector Fields Viz - streamlines

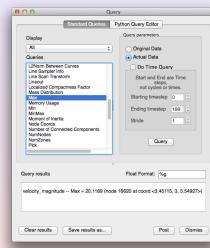

Query to find the Maximum Velocity on the Slice

[Plot List]: click on the pseudocolor velocity_magnitude to make is active

▶ Go to the Controls Menu:

[Max] select

Actual Data ~Query



--

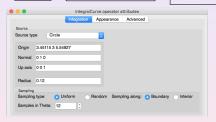
🔼 It: Vector Fields Viz – streamlines

Query to find the Maximum Velocity on the Slice

- Plot List]: click on the pseudocolor velocity_magnitude to make is active
- ▶ Go to the Controls Menu: [Max] select
 Actual Data ~Query
- This will return the maximum scalar value on the slice and the x, y, z coordinates of the node associated with this value.
- We will use the x,y,z coordinates of this node to seed a set of streamlines.

Visit: Vector Fields Viz - streamlines

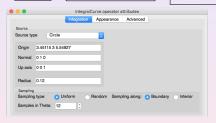
Plotting Streamlines of Velocity



Visit: Vector Fields Viz – streamlines

Plotting Streamlines of Velocity [Plot List]:

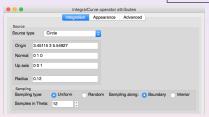
Add Pseudocolor operators/IntergralCurve/velocity



VISIT: Vector Fields Viz – streamlines

Plotting Streamlines of Velocity [Plot List]:

Add Pseudocolor operators/IntergralCurve/velocity



🛣 🔀 : Vector Fields Viz – streamlines

Plotting Streamlines of Velocity [Plot List]:

Add - Pseudocolor - operators/IntergralCurve/velocity

▶ [Geometry tab]

Line type ~Tubes, Tail ~Sphere, Head ~Cone,

→Spriere, Head →Cone

Head/Tail Radius ~0.02

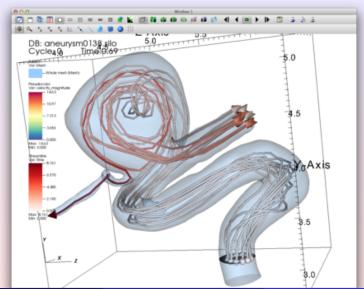
SIt: Vector Fields Viz – streamlines

Plotting Streamlines of Velocity [Plot List]:

Add → **Pseudocolor** → operators/IntergralCurve/velocity

▶ [Geometry tab]

Line type | → Tubes, | Tail


~>Sphere, Head | ~>Cone,

Head/Tail Radius ~0.02

Apply / Draw → [Time Slider] click | Play / Stop

VEIt: Vector Fields Viz – streamlines

Professional Quality Plots

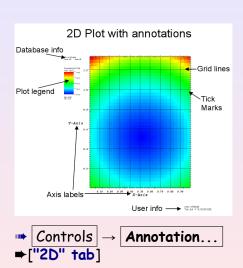
- Annotations
- Colors
- Lighting
- Views

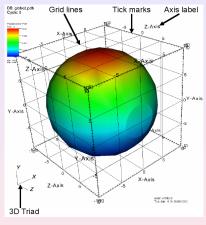
Annotations

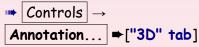
Annotations

- objects in the viz-window that convey information about the plots
- make clear what is being visualized and make the visualization appear more polished

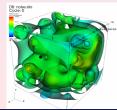
Types of Annotations

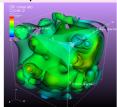

- Database name
- User name
- plot legends
- plot axes and labels (2d & 3d)
- 3d triad
- 2d, 3d text
- time slider
- images
- line and arrows

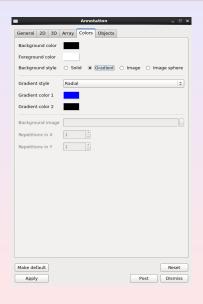

Annotation Window


- General annotations
- 2D axes settings
- 3D axes settings
- Array axis settings
- Color and Backgrounds
- Objects (legend, time slider, ...)

2D & 3D Annotations

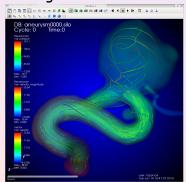





Colors and Backgrounds

- Controls → Annotation...

 → ["Colors" tab]
 - set background/foreground
 - Backgroun styles:
 - solid
 - gradient
 - image (flat image)
 - image sphere (warped image, that rotates with the view)
 - number of repetitions





Annotation Objects

- Controls → Annotation...
 - 2D/3D Text
 - 2D/3D Lines
 - Time Slider
 - Image

- Lighting affects the brightness of plots
- 3D visualizations may require multiple light sources
- VisIt allows up to 8 light sources
- Each light source can be positioned and colored

- Lighting affects the brightness of plots
- 3D visualizations may require multiple light sources
- VisIt allows up to 8 light sources
- Each light source can be positioned and colored
- \longrightarrow Controls \longrightarrow Lighting...
 - [Edit]: configure light sources
 - [Preview]: all sources are visible

- only the active light can be modified
- once a light has been selected, you can change its props.
- Types of lights: Ambient Camera, Object Light

- Lighting affects the brightness of plots
- 3D visualizations may require multiple light sources
- VisIt allows up to 8 light sources
- Each light source can be positioned and colored
- \longrightarrow Controls \rightarrow Lighting...
 - [Edit]: configure light sources
 - [Preview]: all sources are visible

- only the active light can be modified
- once a light has been selected, you can change its props.
- Types of lights: Ambient Camera, Object Light

- Lighting affects the brightness of plots
- 3D visualizations may require multiple light sources
- VisIt allows up to 8 light sources
- Each light source can be positioned and colored
- \longrightarrow Controls \rightarrow Lighting...
 - [Edit]: configure light sources
 - [Preview]: all sources are visible

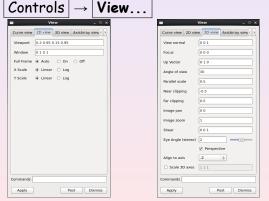
- only the active light can be modified
- once a light has been selected, you can change its props.
- Types of lights: Ambient, Camera, Object Light

M.Ponce (SciNet/UofT)

Position, Color, Brightness

View

- the "view" can be set interactively in the viz-window (click and drag, ...)
- or using a "View Window", to specify exactly the configuration view

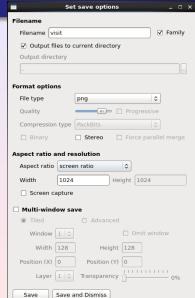


View

- the "view" can be set interactively in the viz-window (click and drag, ...)
- or using a "View Window", to specify exactly the configuration view

 "Locked view": when the view changes in any locked window, all other locked window readjust to it

Generating "hardcopies", aka plotting images and figures

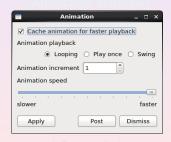

Generating Hardcopies: Figures

Set Save option...

Allows you to control the properties of the image: file type, resolution, naming convention, etc...

② → | File | → | Save window Generates the image/file of the currently displayed window.

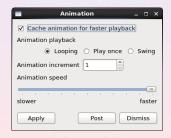
Movie Generation


Movies & Animations

- sequence in time (evolution)
- motion through space (usually done through scripting)

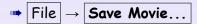
Basic timestep Animation

- Simplest case: "static animation", in which only the database timestep changes
- Allows database behaviour over time to be quickly inspected (without the complexity of scripting)
- Controlled through [VCR]-typeof buttons on the time-framming panel of the main windows



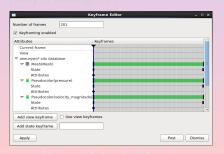
Basic timestep Animation

- Simplest case: "static animation", in which only the database timestep changes
- Allows database behaviour over time to be quickly inspected (without the complexity of scripting)
- Controled through [VCR]-typeof buttons on the time-framming panel of the main windows


Basic timestep Animation

- Simplest case: "static animation", in which only the database timestep changes
- Allows database behaviour over time to be quickly inspected (without the complexity of scripting)
- Controlled through [VCR]-typeof buttons on the time-framming panel of the main windows

Movie Wizard



Guided Movie Generation

- Produce several formats and resolutions, at the same time
- Stereo movies
- Can handle currently allocated processors or spawn another VisIt session for movie-generation
- Can use movie templates to assemble complex sequence of frames

- Advanced form of animation, that allows attributes to change as the animation progresses
- Attributes that can be keyframed: Plots attributes, Database states, View
- Eg. make a plot fade out as the animation progresses, make view slowly change, ...

- Advanced form of animation, that allows attributes to change as the animation progresses
- Attributes that can be keyframed: Plots attributes, Database states, View
- Eg. make a plot fade out as the animation progresses, make view slowly change, ...



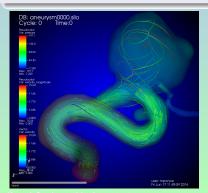
- Advanced form of animation, that allows attributes to change as the animation progresses
- Attributes that can be keyframed: Plots attributes, Database states, View
- Eg. make a plot fade out as the animation progresses, make view slowly change, ...

- Enable "keyframing mode"
- Adjust number of frames
- a keyframe is created for each plot attrib.

- Advanced form of animation, that allows attributes to change as the animation progresses
- Attributes that can be keyframed: Plots attributes, Database states, View
- Eg. make a plot fade out as the animation progresses, make view slowly change, ...

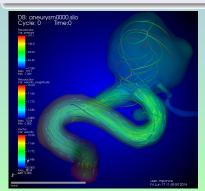
- Enable "keyframing mode"
- Adjust number of frames
- a keyframe is created for each plot attrib.
- Plot attribs. are calculated for each frame
- Using the keyframe indicators
 , set the time range for each attribute

- Advanced form of animation, that allows attributes to change as the animation progresses
- Attributes that can be keyframed: Plots attributes, Database states, View
- Eg. make a plot fade out as the animation progresses, make view slowly change, ...

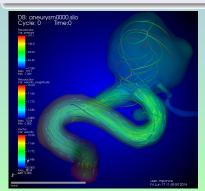


- Enable "keyframing mode"
- Adjust number of frames
- a keyframe is created for each plot attrib.
- Plot attribs. are calculated for each frame
- Using the keyframe indicators
 , set the time range for each attribute

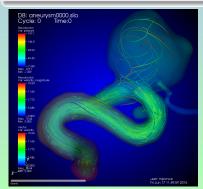
WisIt: Intermesso ii


- Using the "aneurysm" dataset -or- your own data, generate a time sequence movie
- ▶ Experiment with keyframming, lighting, ... or any of the other techniques we have been discussing

🚺 It: Intermesso ii


- Using the "aneurysm" dataset -or- your own data, generate a time sequence movie
- Experiment with keyframming, lighting, ... or any of the other techniques we have been discussing

🚺 It: Intermesso ii


- Using the "aneurysm" dataset -or- your own data, generate a time sequence movie
- Experiment with keyframming, lighting, ... or any of the other techniques we have been discussing

🚺 It: Intermesso ii

- Using the "aneurysm" dataset -or- your own data, generate a time sequence movie
- Experiment with keyframming, lighting, ... or any of the other techniques we have been discussing

Remote Visualization

Thre may be different reasons why one would want to visualize data remotelly:

- data locality: data is located in a remote site, eq. cluster
- the remote server is more powerful and can generate more demanding visualizations
- ..

Ways to Visualize Remotely

- X-forwarding
- VNC
- Server-Client protocol, natively provided by the Viz. Suite

X-forwarding

- the viz. software will run on the remote host
- all the graphics are forwarded to the local computer
- it is usually slow! Alternatively one could use VNC instead...

```
ssh -X -p2222 USERNAME@bridges.psc.edu
```

```
module load visit
visit
# for executing in parallel
with 40 processors
module load intel intelmpi
visit -np 40
```

ry running,
visit —help
visit —fullhelp
for more command line
arauments...

X-forwarding

- the viz. software will run on the remote host
- all the graphics are forwarded to the local computer
- it is usually slow! Alternatively one could use VNC instead...

ssh -X -p2222 USERNAME@bridges.psc.edu

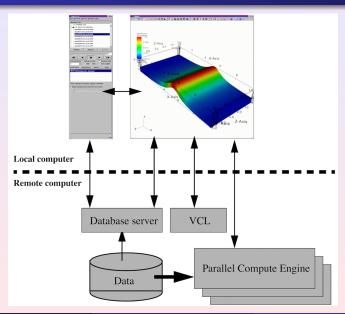
```
module load visit
visit
# for executing in parallel
with 40 processors
module load intel intelmpi
visit -np 40
```

M. Ponce (SciNet/UofT)

X-forwarding

- the viz. software will run on the remote host
- all the graphics are forwarded to the local computer
- it is usually slow! Alternatively one could use VNC instead...

ssh -X -p2222 USERNAME@bridges.psc.edu


```
module load visit visit
```

```
# for executing in parallel
with 40 processors
module load intel intelmpi
visit -np 40
```

Try running,
visit -help
visit -fullhelp
for more command line
arguments...

However, **bridges** does *not* provide interactive VisIt via x-forwarding, hence this method won't work!

Client-Server Protocol

Remote Visualization - Client-Server Mode

VisIt supports "remote visualization" protocols, which includes:

- accessing data remotely, ie. stored on the cluster
- rendering visualizations using the compute nodes as rendering engines
- or both

For allowing VisIt connect to the Bridges cluster you need to set up a "Host Configuration"

- use the Bridges Host configuration file: https://support. scinet.utoronto.ca/~mponce/viz/host_bridges.xml
- configure the host manually

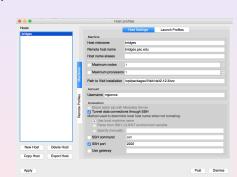
Remote Visualization - Client-Server Mode

VisIt supports "remote visualization" protocols, which includes:

- accessing data remotely, ie. stored on the cluster
- rendering visualizations using the compute nodes as rendering engines
- or both

For allowing VisIt connect to the Bridges cluster you need to set up a "Host Configuration"

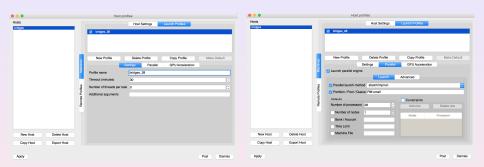
- use the Bridges Host configuration file: https://support. scinet.utoronto.ca/~mponce/viz/host_bridges.xml
- configure the host manually


^{*} OBS: VisIt requires to use the same version in both the local client and the remote host!

Using the Bridges Host configuration file

- Oownload the Bridges Host configuration file, from the following link https://support.scinet.utoronto.ca/~mponce/viz/ host_bridges.xml
- 2 Depending on the OS you are using on your local machine:
 - on a Linux/Mac OS place this file in ~/.visit/hosts/
 - on a Windows machine, place the file in
 My Documents\VisIt 2.13.0\hosts\
- Restart VisIt and check that the brigdes profile should be available in your hosts [Options] Host Profiles...

Manual Host Configuration


- ① [Options] ➡ "Host profiles...", click
 on 'New Host' and select:
 Host nickname = bridges
 Remote host name =
 bridges.psc.edu
 Username = YOURusername
 Path to VisIt
 installation =
 /opt/packages/VisIt/visit2.12.3/src/
- Click on the "Tunnel data connections through SSH", and then hit Apply!

Manual Host Configuration (cont.)

- On the top of the window click on 'Launch Profiles' tab. You will have to create a profile:
 - Profile name: bridges_28
- Then click on the Parallel tab and set the "Launch parallel engine"
 - Parallel launch method: sbatch/mpirun
 - Partition/Pool/Queue: RM-small
 - Number of processors: 28
- Don't forget to select Options/Save Settings!

Manual Host Configuration (cont.)

Finally, go to the "Options" menu and select "Save settings", so that your changes are saved and available next time you relaunch VisIt.

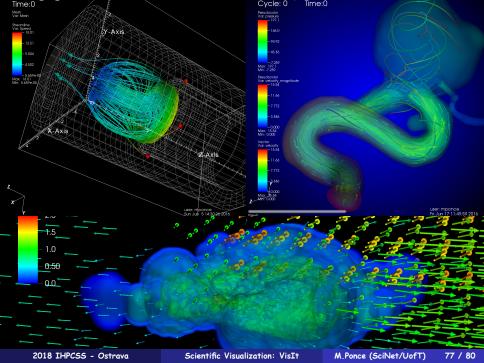
Accessing Remote Hosts...

- [File] → Open file... → click on "Host •"
- A list possible hosts should display, including "bridges" select it!
- You will be asked to enter your password, check that the username is correct! Otherwise, click on [Change Username]!
- If the connection was sucessful, the window should be displaying the remote File System, eg. Path: /home/USERNAME
- Try copying the datasets, either directly from the internet,
 aurl -L -O
 - https://support.scinet.utoronto.ca/~mponce/courses/datasets/visit/datasets.tar.ga or copy if from my homedir, cp -rv /home/mjponce/visit-examples ~ O uncompress your datafiles: tar -xvvzf datasets.tar.gz
- Hit [Refresh] in VisIt's file browser window

Accessing Remote Hosts...

- A list possible hosts should display, including "bridges" select it!
- You will be asked to enter your password, check that the username is correct! Otherwise, click on [Change Username]!
- If the connection was sucessful, the window should be displaying the remote File System, eg. Path: /home/USERNAME
- ssh into bridges: ssh -p2222 USERNAME@bridges.psc.edu
- Try copying the datasets, either directly from the internet,

```
https://support.scinet.utoronto.ca/~mponce/courses/datasets/visit/datasets.tar.gz


or copy if from my homedir, cp -rv /home/mjponce/visit-examples ~
```

- uncompress your datafiles: tar -xvvzf datasets.tar.gz
- Hit [Refresh] in VisIt's file browser window

- Scientific Visualization
 - 2D/3D Visualization Generalities
 - Visualization Pipeline
- 2 VisI
 - Generalities
 - Viz. Pipelines Basics
 - Tutorial
 - Dataset Exploration
 - Vector Fields Visualizations
 - High Quality Plots
 - Professional Quality Plots
 - Movies Generation
 - Remote Vizualization
- 3 Summary
- 4 Further Resources
 - References

Section 3

Summary

- Scientific Visualization
 - 2D/3D Visualization Generalities
 - Visualization Pipeline
- 2 VisIt
 - Generalities
 - Viz. Pipelines Basics
 - Tutorial
 - Dataset Exploration
 - Vector Fields Visualizations
 - High Quality Plots
 - Professional Quality Plots
 - Movies Generation
 - Remote Vizualization
- Summary
- Further Resources
 - References

Website:

https://wci.llnl.gov/simulation/computercodes/visit/ https://wci.llnl.gov/codes/visit/

Documentation:

https://wci.llnl.gov/simulation/computercodes/visit/manuals

VisIt User Manual:

http://visit-sphinx-user-manual.readthedocs.io

- Gallery: https://wci.llnl.gov/simulation/computercodes/visit/gallery
- Visit Users wiki: http://www.visitusers.org
- Tutorials: http://www.visitusers.org/index.php?title=VisIt_Tutorial
- Examples Datasets:

http://www.visitusers.org/index.php?title=Tutorial_Data

- ParaView Tutorial
- http://www.paraview.org/Wiki/The_ParaView_Tutorial
- → CI-Tutor: Cyber Infrastructure Tutor
- "Introduction to Visualization" http://www.citutor.org
- specifics or general questions abotu viz...
 - mponce AT scinetoutorontooca