
Exercise: Parallel Traffic Modelling

David Henty, EPCC

1 Introduction and Aims

The aim of this exercise is to take a simple example, the 1D traffic model as described in the lectures,
and parallelise it in various ways. The way this is done directly mirrors the potential parallelisation
strategies for the code used in the HPC challenge which simulates heat diffusion (a Laplace equation)
using Jacobi iteration. The idea is that you can easily experiment with things in the simple traffic model
before implementing them in the slightly-more-complex Laplace code.

You will be given source code, implemented in both C and Fortran, that contains:

1. a working serial code;

2. a working MPI code;

3. a skeleton OpenMP code (basically the same as serial);

4. Makefiles and template batch submission scripts for Bridges.

The exercises below range from fairly basic to very advanced. Please start at whatever level you want to!

2 Instructions

Copy the code from /home/dsh/ihpcss18/IHPCSS-traffic.tar. This document is in the
same directory called traffic-ihpcss18.pdf

Unpack, compile and run the codes exactly as described in the “Bridges Crib Sheet”.

2.1 Verification

The way it is written the code should give exactly the same answer for both languages regardless of
whether it is serial or parallel. For a road of length 100000, the velocity at iteration 2000 should be
0.931989 (to 6 decimal places). If you get a different answer then your code is probably wrong!

You will experiment with increasing the length of the road – just change the value of ncell near the top
of the main program. If you decide to use a road of a different length, you should re-run the serial code
to get a new baseline result. Note that the way the MPI code is implemented, it assumes that the length
of the road is an exact multiple of the number of processes.

The number of iterations is set quite low and you may wish to increase this when measuring performance
so that the parallel code still runs for a reasonable length of time (e.g. for around a second). Simply
multiply the value of maxiter by, say, a factor of 10:

maxiter = 200000000/ncell;
maxiter = maxiter*10;
printfreq = maxiter/10;
...
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3 MPI exercises

These range from fairly basic to very advanced. Please attempt whatever ones you feel comfortable with.

1. Run the MPI code on a range of process counts (e.g. 1, 2, 5, 10, 20, 40 and 50) and plot a graph of
the speedup against the number of processes.

2. Do the same with very short and very long roads and compare the performance results.

3. The global sum requires a parallel reduction MPI_Allreduce which is an expensive operation.
Modify the code so it only calls reductions when necessary; investigate the effect on performance.

4. Replace the MPI_Sendrecv call with separate calls to MPI_Send and MPI_Recv and check
that the code still runs correctly. Note that you have probably written a technically incorrect code
because MPI_Send could be implemented as a synchronous send.

5. Replace the call to MPI_Sendwith MPI_Ssend to guarantee that it is implemented synchronously.
As it stands, your code will probably deadlock (see Section 3.1 for more exercises on this topic).

6. Fix the deadlock by arranging the processes into odd/even pairs where, in each pair, one process
sends first then receives and the other receives first then sends.

7. Solve the deadlock problem using non-blocking operations. There are a number of options:

(a) a non-blocking send (MPI_ISsend), a blocking receive (MPI_Recv) and a wait (MPI_Wait);

(b) a non-blocking receive, a blocking send and a wait;

(c) a non-blocking send, a non-blocking receive and multiple waits (e.g. MPI_Waitall).

When developing the non-blocking code, you should use synchronous send (i.e MPI_Ssend /
MPI_Issend) as opposed to standard send (MPI_Send). This ensures an incorrect code is guar-
anteed to deadlock; with standard sends, an incorrect code might just happen to run correctly which
is not desirable. Once working you can switch to MPI_Send which should improve performance.

8. Put an MPI_Barrier at the end of every iteration. Although this is completely unnecessary,
many people do this kind of thing “just to be safe”. What is the effect on performance?

9. Implement the non-blocking halo exchange using persistent communications. In the case of run-
ning on 2 processes, where the up and down neighbour are both the same process, can you guaran-
tee that the sends and receives will match correctly?

10. Try to overlap some of the computation with communications, i.e. update the interior cells of the
road while waiting for the halo data to arrive.

11. Minimise the latency overhead by using deep halos, i.e. exchange more than one boundary element
and then do multiple iterations before the next halo swap. It is much easier to implement an explicit
depth first (e.g. 2 halo points) before attempting the general case of depth D.

12. Combine deep halos with overlapping communication and calculation.

3.1 Non-periodic boundary conditions

The reason that the traffic model deadlocks with a naive implementation using synchronous sends is
because of the periodic boundary conditions: all processes are trying to send at the same time. With
non-periodic boundaries, however, processes at the extreme ends of the road will not need to send or
receive some of the data and the deadlock is broken.

Update the traffic model to use non-periodic boundaries:

1. Set the halo at the exit of the road (on the last process) to be zero so cars are always free to leave;
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2. Each iteration, set the halo data at the entrance to the road (on the first process) to be 1 with
probability density, otherwise set to zero. This maintains the same density of traffic for the
whole simulation; see initroad() to see how to call the random number generator.

3. Run the code on one and many processes; does it give the same answer? Do you understand why?

4. Implement the halo swapping using blocking synchronous sends and receives (MPI_Ssend /
MPI_Recv); unlike the periodic case, the code should not deadlock.

5. Compare the performance with the version using MPI_Sendrecv and using MPI_Send / MPI_Recv.
Although it works correctly, the synchronous version should be slower; do you understand why?

4 OpenMP exercises

1. Parallelise the main update loop in the updateroad function using parallel for / parallel do.
Use default(none) and be careful to classify the variables correctly.

2. Run the OpenMP code on a range of thread counts (e.g. 1, 2, 5, 10, 20 and 28) and plot a graph of
the speedup against the number of threads.

3. Now parallelise the “copy-back” loop and investigate the effect on performance.

4. Change the code so it only computes the total number of moves when absolutely necessary. How
does the impact on performance compare with the equivalent optimisation in MPI?

5. By default, OpenMP threads can be scheduled across any of the cores in a node. It can be bet-
ter in terms of performance to pin them to specific threads. In the batch script, add the line
export KMP_AFFINITY=compact to ensure threads are pinned to cores in order. What effect
does this have on performance?

6. Before the first call to initroad(), zero both the oldroad and newroad arrays using a par-
allel loop. With a very long road (e.g. at least ten million cells), what is the effect on performance
for small and large numbers of threads? Do you understand what is happening here?

7. Minimise the overhead of creating parallel regions by enclosing the entire iteration loop with a
single parallel region. What is the effect on performance? Note that this is very challenging, e.g.
you will now need to implement updateroad() using orphaned directives.

5 Hybrid MPI/OpenMP

It should be quite simple to introduce OpenMP directives into the MPI code in exactly the same way as
the serial code.

1. Set the length of the road to include a factor of 28, e.g. you could use 112000, so you have more
freedom to vary the number of processes (28 being the number of cores on each node).

2. Compare performance for different numbers of processes or threads on the same number of cores.
For example, on 2 nodes with a total of 56 cores you could use: 56 processes (P ) with 1 thread per
process (T ); (P = 28, T = 2); (P = 14, T = 4); . . .; (P = 2, T = 28).
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