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Outline 

• Message-Passing Parallelism 

- processes 

- distributed-memory architectures 

• Shared-Variables Parallelism 

- threads 

- shared-memory architectures 

• Practicalities 

- usage on real HPC architectures 
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Message Passing 

Process-based parallelism 
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Analogy 

• Two whiteboards in different single-person offices 

- the distributed memory 

• Two people working on the same problem 

- the processes on different nodes attached to the interconnect 

 

• How do they collaborate? 

- to work on single problem 

 

• Explicit communication 

- e.g. by telephone 

- no shared data 
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Synchronisation 

• Synchronisation is automatic in message-passing 

- the messages do it for you 

 

• Make a phone call … 

- … wait until the receiver picks up 

• Receive a phone call 

- … wait until the phone rings 

 

• No danger of corrupting someone else’s data 

- no shared blackboard 
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Shared Variables 

Threads-based parallelism 
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Analogy 

• One very large whiteboard in a two-person office 

- the shared memory 

• Two people working on the same problem 

- the threads running on different cores attached to the memory 

 

• How do they collaborate? 

- working together 

- but not interfering 

 

• Also need private data 
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Threads 
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PC PC PC Private data Private data Private data 

Shared data 

Thread 1 Thread 2 Thread 3 
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11 



Synchronisation 

• Synchronisation crucial for shared variables approach 

- thread 2’s code must execute after thread 1 

 

• Most commonly use global barrier synchronisation 

- other mechanisms such as locks also available 

 

• Writing parallel codes relatively straightforward 

- access shared data as and when its needed 

 

• Getting correct code can be difficult! 
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Threads: Summary 

• Shared blackboard a good analogy for thread parallelism 

• Requires a shared-memory architecture 

- in HPC terms, cannot scale beyond a single node 

 

• Threads operate independently on the shared data 

- need to ensure they don’t interfere; synchronisation is crucial 

 

• Threading in HPC usually uses OpenMP directives 

- supports common parallel patterns 

- e.g. loop limits computed by the compiler 

- e.g. summing values across threads done automatically 
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OpenMP fork / join model 

Sequential part 

Sequential part 

Sequential part 

Parallel region 

Parallel region 
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Practicalities 

How we use the parallel models 
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Practicalities 

• 8-core machine might only have 2 
nodes 

- how do we run MPI on a real HPC 
machine? 

 

• Mostly ignore architecture 

- pretend we have single-core nodes 

- one MPI process per processor-core 

- e.g. run 8 processes on the 2 nodes 

 

• Messages between processor-
cores on the same node are fast 

- but remember they also share access 
to the network 

 

 

Interconnect 
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Hybrid MPI / OpenMP 

• Take advantage of architecture 

- one MPI process per node 

- four OpenMP threads per process 

• one for each physical code 

 
Interconnect 
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