
Parallel Models
Different ways to exploit parallelism

Reusing this material

This work is licensed under a Creative Commons Attribution-
NonCommercial-ShareAlike 4.0 International License.

http://creativecommons.org/licenses/by-nc-sa/4.0/deed.en_US

This means you are free to copy and redistribute the material and adapt and build on the
material under the following terms: You must give appropriate credit, provide a link to the
license and indicate if changes were made. If you adapt or build on the material you must

distribute your work under the same license as the original.

Acknowledge EPCC as follows: “© EPCC, The University of Edinburgh, www.epcc.ed.ac.uk”

Note that this presentation contains images owned by others. Please seek their permission
before reusing these images.

2

http://creativecommons.org/licenses/by-nc-sa/4.0/deed.en_US
http://creativecommons.org/licenses/by-nc-sa/4.0/deed.en_US
http://creativecommons.org/licenses/by-nc-sa/4.0/deed.en_US
http://creativecommons.org/licenses/by-nc-sa/4.0/deed.en_US
http://creativecommons.org/licenses/by-nc-sa/4.0/deed.en_US
http://creativecommons.org/licenses/by-nc-sa/4.0/deed.en_US

Outline

• Message-Passing Parallelism

- processes

- distributed-memory architectures

• Shared-Variables Parallelism

- threads

- shared-memory architectures

• Practicalities

- usage on real HPC architectures

3

Message Passing

Process-based parallelism

4

Analogy

• Two whiteboards in different single-person offices

- the distributed memory

• Two people working on the same problem

- the processes on different nodes attached to the interconnect

• How do they collaborate?

- to work on single problem

• Explicit communication

- e.g. by telephone

- no shared data

my

data

my

data

5

a=23 Recv(1,b)
Process 1 Process 2

23

23

24

23

Program

Data

Send(2,a) a=b+1

Process communication

6

Synchronisation

• Synchronisation is automatic in message-passing

- the messages do it for you

• Make a phone call …

- … wait until the receiver picks up

• Receive a phone call

- … wait until the phone rings

• No danger of corrupting someone else’s data

- no shared blackboard

7

Shared Variables

Threads-based parallelism

8

Analogy

• One very large whiteboard in a two-person office

- the shared memory

• Two people working on the same problem

- the threads running on different cores attached to the memory

• How do they collaborate?

- working together

- but not interfering

• Also need private data

my

data

shared

data
my

data

9

Threads

10

PC PC PC Private data Private data Private data

Shared data

Thread 1 Thread 2 Thread 3

Thread 1 Thread 2

mya=23

mya=a+1

23

23 24

Program

Private

data

Shared

data

a=mya

Thread Communication

11

Synchronisation

• Synchronisation crucial for shared variables approach

- thread 2’s code must execute after thread 1

• Most commonly use global barrier synchronisation

- other mechanisms such as locks also available

• Writing parallel codes relatively straightforward

- access shared data as and when its needed

• Getting correct code can be difficult!

12

Threads: Summary

• Shared blackboard a good analogy for thread parallelism

• Requires a shared-memory architecture

- in HPC terms, cannot scale beyond a single node

• Threads operate independently on the shared data

- need to ensure they don’t interfere; synchronisation is crucial

• Threading in HPC usually uses OpenMP directives

- supports common parallel patterns

- e.g. loop limits computed by the compiler

- e.g. summing values across threads done automatically

13

OpenMP fork / join model

Sequential part

Sequential part

Sequential part

Parallel region

Parallel region

14

int main(){

.

.

#pragma omp parallel

{

.

.

.

.

.

.

.

}

.

.

.

.

#pragma omp parallel

{

.

.

.

}

.

.

.

Practicalities

How we use the parallel models

15

Practicalities

• 8-core machine might only have 2
nodes

- how do we run MPI on a real HPC
machine?

• Mostly ignore architecture

- pretend we have single-core nodes

- one MPI process per processor-core

- e.g. run 8 processes on the 2 nodes

• Messages between processor-
cores on the same node are fast

- but remember they also share access
to the network

Interconnect

16

Hybrid MPI / OpenMP

• Take advantage of architecture

- one MPI process per node

- four OpenMP threads per process

• one for each physical code

Interconnect

17

