Asynchronous Parallel
Methods

epcc 1

Collectives

Reduce frequency of calculation by a factor X
e.g. trade more calculation for fewer synchronisations

loop over iterations: loop over iterations:
update arrays; update arrays;
compute local delta; every X 1terations:
compute global delta local delta;
using allreduce; global delta;
stop 1f less than can we stop?;
tolerance value;

end loop end loop

Possible because array updates independent of global values

may not be true for, e.g., Conjugate Gradient ; can use different
algorithms, e.g. Chebyshev iteration

‘ gﬁ&n:orcéiﬁrations but less synchronisation

Barriers

- (Almost) never required for MPI program correctness
- Why?

- because collectives do the appropriate synchronisation
- because MPI_Recv is synchronous

epcc ;

Normal halo swapping

halo sv%

swap data into 4 halos: 1=0, 1i=M+1, =0, jJ=M+1
loop 1=1:M; jJ=1:N;
new(i,j) = 0.25%*(old(i-1,73) + old(i+1,7)
+ old(i,j-1) + old(di,j+1)
- edge(i,j))

cpcc

Halo swapping

Do not impose unnecessary ordering of messages

loop over directions: loop over directions:
send up; recv down; 1send up; 1recv down;
send down; recv up; 1send down; 1recv up;
end loop end loop

walt on all requests;

Extensions
can now overlap communications with core calculation
only need to wait for receives before non-core calculation
wait for sends to complete before starting next core calculation

cpcc

Overlapping

halo swap

start non-blocking sends/recvs
loop 1=2:M-1; 3=2:N-1;

new(i,j) = 0.25*(old(i-1,3) + old(i+1,7)
+ old(1,J-1) + old(i,3j+1)
- edge(l,j))

wait for completion of non-blocking sends/recvs
complete calculation at the four edges

epcc :

Halos of Depth D every D iterations

- Smaller number of larger messages; increased computation

halo sv%
loop d=D:1:-1

loop i1=2-d:M+d-1; jJ=2-d:N+d-1;

new(i,j) = 0.25%(old(i-1,3) + old(i+1,7)
+ old(i,3j-1) + old(i,j+1)
- edge (1, 7))

epcc ;

Swap depth D every D iterations

y

=)

&

- Need diagonal communications

cpcc

Implementation

Do 8 non-blocking sends and 8 non-blocking receives
as opposed to only 4 for depth=1
... Or 26 vs 6 for three dimensions
when we wanted to send fewer messages!

Can “carry” halos rather than explicit diagonal comms
ordered swaps: left/right after up/down ...
— ... but introduces more synchronisation

Quite hard to implement in practice
D=1 is (thankfully) special case for 5-point stencil with no diagonals

epcc 9

Persistent communications

- Standard method: run this code every iteration

MPI Irecv (..., procup, ..., ®sl[O0]);
MPI Irecv (..., procdn, ..., ®s[l]);
MPI Isend(..., procdn, ..., ®s[2]);
MPI Isend(..., procup, ..., ®sl[3]);

MPI Waitall (4, regs, statuses);

- Persistent comms: setup once

MPI Recv init(..., procup, ..., ®s[0]);
MPI Recv init (..., procdn, ..., ®s[l]);
MPI Send init (..., procdn, ®s[2]);
MPI Send init (..., procup, ..., ®s[3]);

- Every iteration:
MPI Startall (4, regs);

- Warning
- message ordering not guaranteed to be preserved

epcc .

