Rules and Regulations of the
4th Annual IHPCSS
Challenge

Trophy bears no relationship
to reality.
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Starting Point

We give you working codes in MPI, OpenMP and OpenACC
copy “challenge.tar” from /home/dsh/ihpcss18/.

Set up to tackle a problem of size 672x672
challenge is to run a much larger problem

* Straightforward solutions

no attempts at parallel (or serial) optimisation
each only uses a single model

p

* No compilation instructions
you decide how best to compile
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General Rules

Due Thursday midnight (!)
4 Nodes of Bridges

Use any combination of MPl, OpenMP, OpenACC and Python
base versions (C and Fortran) for MPl, OpenMP and OpenACC on moodle
single tar file: challenge.tar

* How fast can you run a 10752 x 10752 Laplace code to
convergence?
weird size chosen to decompose exactly on, e.g., 2, 4, 28 and112 procs
can use smaller size of 672 x 672 for development
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Some Specifics

* Can’t change kernel (Must retain two core loops source)
* Can change number of MPI processes (Does not have to be 112 or 4)

* 1 Source File

* 1 Combined Environment/Compile/Submit/Execute script
* to make it easy for us to run your solutions!

* Mail to d.henty@epcc.ed.ac.uk by deadline



Rules For Lawyers

* No libraries

* Don’t mess with timer placement



Reality Checks

Serial code converges at 3580 time steps. Yours should too.

* As we know, this is not enough to verify correctness. You should find
point [8064][10702] in C and (10702,8064) in Fortran converges to 17.1

degrees.

¢ As discussed, the 10752 result differs from the 672 result.*

smaller problem converges in 3264 time steps
check values: [504][622] in C, (622,504) in Fortran = 15.5 degrees

* Plugging in Gauss-Seidel or Successive Over Relaxation (SOR) would be easy and
interesting. But, not for our contest.

http://www.cs.berkeley.edu/~demmel/cs267/lecture24/lecture24.html is a brief analysis of these issues.
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Printing out the test point

Straightforward in serial, OpenMP or OpenACC
single process, temperature stored in a single global array

More complicated when you introduce MPI - must locate owning process
if (8064/columns == mype+1) then
write(*,*) 'PE ‘', mype, ": T(10702,8064) =, temperature(10702,columns)
end if

* if (8064/ROWS == my_PE_num+1)
. printf("PE %d: T(8064,10702) = %f\n", my_PE_num,Temperature[ROWS][10702]);

* This hacky piece of code requires at least 4 MPI processes!

http://www.cs.berkeley.edu/~demmel/cs267/lecture24/lecture24.html is a brief analysis of these issues.
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Suggested Things to Explore

Compiler flags
¢ -03

Compiler

¢ see Bridges documentation for how

to use different modules

MPI Environment Variables
¢ man mpi

Thread placement
¢ google for KMP_AFFINITY

User Guide is your friend!

/\

OpenMP ¢ OpenACC




* Best of two runs for each finalist will determine winner

Decision

On Friday morning we will take the top self-reported speeds and
run them in an interactive session

* Timings not within 10% of self-reported time will be disqualified

* Codes should print out “test point” at conclusion of run.




