Rules and Regulations of the
4th Annual IHPCSS
Challenge

Trophy bears no relationship
to reality.

PITTSBURGH
‘V SUPERCOMPUTING
CENTER



Starting Point

We give you working codes in MPI, OpenMP and OpenACC
copy “challenge.tar” from /home/dsh/ihpcss18/.

Set up to tackle a problem of size 672x672
challenge is to run a much larger problem

* Straightforward solutions

no attempts at parallel (or serial) optimisation
each only uses a single model

p

* No compilation instructions
you decide how best to compile

EEEEEE



General Rules

Due Thursday midnight (!)
4 Nodes of Bridges

Use any combination of MPl, OpenMP, OpenACC and Python
base versions (C and Fortran) for MPl, OpenMP and OpenACC on moodle
single tar file: challenge.tar

* How fast can you run a 10752 x 10752 Laplace code to
convergence?
weird size chosen to decompose exactly on, e.g., 2, 4, 28 and112 procs
can use smaller size of 672 x 672 for development

EEEEEE



Some Specifics

* Can’t change kernel (Must retain two core loops source)
* Can change number of MPI processes (Does not have to be 112 or 4)

* 1 Source File

* 1 Combined Environment/Compile/Submit/Execute script
* to make it easy for us to run your solutions!

* Mail to d.henty@epcc.ed.ac.uk by deadline



Rules For Lawyers

* No libraries

* Don’t mess with timer placement



Reality Checks

Serial code converges at 3580 time steps. Yours should too.

* As we know, this is not enough to verify correctness. You should find
point [8064][10702] in C and (10702,8064) in Fortran converges to 17.1

degrees.

¢ As discussed, the 10752 result differs from the 672 result.*

smaller problem converges in 3264 time steps
check values: [504][622] in C, (622,504) in Fortran = 15.5 degrees

* Plugging in Gauss-Seidel or Successive Over Relaxation (SOR) would be easy and
interesting. But, not for our contest.

http://www.cs.berkeley.edu/~demmel/cs267/lecture24/lecture24.html is a brief analysis of these issues.

EEEEE



Printing out the test point

Straightforward in serial, OpenMP or OpenACC
single process, temperature stored in a single global array

More complicated when you introduce MPI - must locate owning process
if (8064/columns == mype+1) then
write(*,*) 'PE ‘', mype, ": T(10702,8064) =, temperature(10702,columns)
end if

* if (8064/ROWS == my_PE_num+1)
. printf("PE %d: T(8064,10702) = %f\n", my_PE_num,Temperature[ROWS][10702]);

* This hacky piece of code requires at least 4 MPI processes!

http://www.cs.berkeley.edu/~demmel/cs267/lecture24/lecture24.html is a brief analysis of these issues.

PITTSBURGH
‘VSUPERCOMPUTI NG
CENTER



.

Suggested Things to Explore

Compiler flags
¢ -03

Compiler

¢ see Bridges documentation for how

to use different modules

MPI Environment Variables
¢ man mpi

Thread placement
¢ google for KMP_AFFINITY

User Guide is your friend!

/\

OpenMP ¢ OpenACC




* Best of two runs for each finalist will determine winner

Decision

On Friday morning we will take the top self-reported speeds and
run them in an interactive session

* Timings not within 10% of self-reported time will be disqualified

* Codes should print out “test point” at conclusion of run.




