
John Urbanic
Parallel Computing Scientist

Pittsburgh Supercomputing Center

Copyright 2017

Intro To Spark

Firing Up The Hands-On
Let’s make sure all is well with our hands-on environment first.

Grab a node
interact

We have hundreds of packages on Bridges. They each have many paths and variables that need to be set for their own proper environment, and they are
often conflicting. We shield you from this with the wonderful modules command. You can load the two packages we will be using as

Spark
module load spark

Tensorflow (Not now! But later)
module load tensorflow/1.1.0

source $TENSORFLOW_ENV/bin/activate

Copy over our exercise data, and move into an interesting starting point
cp –r ~training/BigData .

cd BigData/Shakespear

Start up Spark
pyspark

You may see a lot of noise (warning! Warning!) which you should ignore as long as you get a nice “Wecome to Spark” message at the end.

The Shift to Big Data

Pan-STARRS telescope

http://pan-starrs.ifa.hawaii.edu/public/

Genome sequencers
(Wikipedia Commons)

NOAA climate modeling
http://www.ornl.gov/info/ornlreview/v42_3_09/article02.shtml

Collections
Horniman museum: http://www.horniman.ac.uk/

get_involved/blog/bioblitz-insects-reviewed

Legacy documents
Wikipedia Commons

Environmental sensors: Water temperature profiles

from tagged hooded seals
http://www.arctic.noaa.gov/report11/biodiv_whales_walrus.html

Library of Congress stacks
https://www.flickr.com/photos/danlem2001/6922113091/

Video
Wikipedia Commons

Social networks and the Internet

New Emphases

Challenges and Software are Co-Evolving

Scientific
Visualization

Statistics

Calculations on
Data

Optimization
(numerical)

Structured
Data

Machine
Learning

Optimization
(decision-
making)

Natural
Language
Processing

Image AnalysisVideo

Sound

Unstructured
Data

Graph
Analytics

Information
Visualization

Programming Language

o We have to pick something

o Pick best domain language

o Python

o But not “Pythonic”

o I try to write generic pseudo-code

o If you know Java or C, etc. you should be fine.

Warning! Warning!

Several of the packages we are using are

very prone to throw warnings about the

JVM or some python dependency.

We’ve stamped most of them out, but don’t

panic if a warning pops up here or there.

In our other workshops we would not

tolerate so much as a compiler warning,

but this is the nature of these software

stacks, so consider it good experience.

Our Setup For This Workshop

After you copy the files from the training directory, you will have:

/BigData

/Clustering

/MNIST

/Recommender

/Shakespeare

Datasets, and

also cut and

paste code

samples are in

here.

Implications of “Big”

A classic amount of “small” data

Find a tasty appetizer – Easy!

Find something to use up these
oranges – grumble…

What if….

Even sophistication has its limits.

Find books on Modern Physics (DD# 539)

Find books by Wheeler

where he isn’t the first author – grumble… Your only hope…

A better sense of biggish
Size
• 1000 Genomes Project

• AWS hosted
• 260TB

• Common Crawl
• Soon to be hosted on Bridges
• 300-800TB+

Throughput
• Square Kilometer Array

• Building now
• Exabyte of raw data/day – compressed to 10PB

• Internet of Things (IoT) / motes
• Endless streaming

Records
• GDELT (Global Database of Events, Language, and Tone)

• 250M rows and 59 fields (BigTable)
• “during periods with relatively little content, maximal translation accuracy can be achieved, with accuracy linearly

degraded as needed to cope with increases in volume in order to ensure that translation always finishes within the
15 minute window…. and prioritizes the highest quality material, accepting that lower-quality material may have a
lower-quality translation to stay within the available time window.”

Let’s map out a few provinces:

• SQL
• No SQL

• Key/Value
• Document
• Column
• Graph

• Analysis / Machine Learning

If it is all about the queries vs. the data, what
options do we have?

Why it isn’t fashionable:

• Schemas set in stone:
• Need to define before we can add data
• Not a fit for “agile development”

• Queries often require accessing multiple indexes and joining
and sorting multiple tables

• Sharding isn’t trivial

• Caching is tough
• ACID (Atomicity,Consistency,Isolation,Durability) in a Transaction is costly.

Good Ol’ SQL
MySQL, Postgres, Oracle, etc.

SELECT NAME, NUMBER, FROM PHONEBOOK
Payroll

Name Number Address

Inventory

Product Number Address

Phonebook

Name Number Address

• Everything Else?

• Not only SQL

• Was effectively NoACID

• Now maybe NoRelational

NoSQL

• Certainly agile (no schema)

• Certainly scalable (linear in most ways: hardware, storage, cost)

• Good hash might deliver fast lookup

• Sharding, backup, etc. could be simple

• Often used for “session” information: online games, shopping carts

Key-Value
Redis, Memcached, Amazon DynamoDB, Riak, Ehcache

GET foo
foo bar

2 fast

6 0

9 0

0 9

text pic

1055 stuff

bar foo

GET cart:joe:15~4~7~0723

• Value must be an object the DB can understand

• Common are: XML, JSON, Binary JSON and nested thereof

• This allows server side operations on the data

Document
Cassandra, CouchDB, MongoDB

GET foo

GET plant=daisy

• Can be quite complex: Linq query, JavaScript function

• Different DB’s have different update/staleness paradigms

OBJECT

foo

2

6 JSON

9 XML

0 Binary JSON

bar JSON
XML

12 XML
XML

<CATALOG>

<PLANT>

<COMMON>Bloodroot</COMMON>

<BOTANICAL>Sanguinaria canadensis</BOTANICAL>

<ZONE>4</ZONE>

<LIGHT>Mostly Shady</LIGHT>

<PRICE>$2.44</PRICE>

<AVAILABILITY>031599</AVAILABILITY>

</PLANT>

<PLANT>

<COMMON>Columbine</COMMON>

<BOTANICAL>Aquilegia canadensis</BOTANICAL>

<ZONE>3</ZONE>

<LIGHT>Mostly Shady</LIGHT>

<PRICE>$9.37</PRICE>

<AVAILABILITY>030699</AVAILABILITY>

</PLANT>

.

.

• No predefined schema

• Can think of this as a 2-D key-value store: the value may be a key-value
store itself

• Different databases
aggregate data differently
on disk with different
optimizations

Wide Column Stores
Google BigTable, Cassandra, HBase

SELECT Name, Occupation FROM People WHERE key IN (199, 200, 207);

Key

Joe Email: joe@gmail Web: www.joe.com

Fred Phone: 412-555-3412 Email: fred@yahoo.com Address: 200 S. Main
Street

Julia Email: julia@apple.com

Mac Phone: 214-555-5847

• Great for semantic web

• Great for graphs

Graph
Neo4J, Titan, GEMS

From PDX Graph Meetup

• Can be hard to visualize

• Serialization can be difficult

• Queries more complicated

SPARQL (W3C Standard)

• Uses Resource Description Framework
format (triple store)

• RDF Limitations
• No named graphs
• No quantifiers or general statements

• “Every page was created by
some author”

• “Cats meow”
• Requires a schema (RDFS) to define rules

• "The object of ‘homepage’ must
be a Document.“

SELECT ?name ?email

WHERE {

?person a foaf:Person.

?person foaf:name ?name.

?person foaf:mbox ?email.

}

Queries
SPARQL, Cypher

Cypher (Neo4J only)

• No longer proprietary
• Stores whole graph, not just triples
• Allows for named graphs
• …and general Property Graphs (edges

and nodes may have values)

SMATCH (Jack:Person

{ name:‘Jack Nicolson’})-[:ACTED_IN]-(movie:Movie)

RETURN movie

What kind
of databases

are they?

Hadoop & Spark

These are both frameworks for distributing and retrieving data. Hadoop is focused on
disk based data and a basic map-reduce scheme, and Spark attempts evolves that in
several directions that we will get in to. Both can accommodate multiple types of
databases and achieve their performance gains by using parallel workers. You are about
to learn a lot more, but here are a few concrete examples:

Hadoop
• HBASE: modeled after BigTable and a natural fit
• HIVE: SQL-like HiveQL converts to the underlying map/reduce

(often much slower)

Spark
• Spark SQL
• GraphX
• MLlib: stats, clustering, optimization, regression, etc.

Frameworks for data

Spark Capabilities
(i.e. Hadoop shortcomings)

• Performance
• First, use RAM
• Also, be smarter

• Ease of Use
• Python, Scala, Java first class citizens

• New Paradigms
• SparkSQL
• Streaming
• MLib
• GraphX
• …more

But using Hadoop as
the backing store is a
common and sensible
option.

Parallel Idea

Driver
Python
Scala
Java

RAM

CPU

RAM

CPU

RAM

CPU

RAM

CPU

RAM

CPU

RAM

CPU

RDD
Resilient Distributed Dataset

Spark Formula

1. Create/Load RDD
Webpage visitor IP address log

2. Transform RDD
”Filter out all non-U.S. IPs”

3. But don’t do anything yet!
Wait until data is actually needed
Maybe apply more transforms (“distinct IPs)

4. Perform Actions that return data
Count “How many unique U.S. visitors?”

>>> lines = sc.textFile("nasa_19950801.tsv")

Simple Example

Read into RDD

Spark Context

The first thing a Spark program requires is a context, which interfaces with some kind of cluster to use. Our
pyspark shell provides us with a convenient sc, using the local filesytem, to start. Your standalone programs will
have to specify one:

conf = SparkConf().setMaster(“local”).setAppName(“Test App”)
sc = SparkContext(conf = conf)

>>> lines = sc.textFile("nasa_19950801.tsv")

>>> stanfordLines = lines.filter(lambda line: "stanford" in line)

>>> stanfordLines.count()
47

>>> stanfordLines.first()
u'glim.stanford.edu\t-\t807258357\tGET\t/shuttle/missions/61-c/61-c-patch-small.gif\t‘

Simple Example

Read into RDD

Transform

Actions

Lambdas

We’ll see a lot of these. A lambda is simply a function that is too simple to deserve its own subroutine.
Anywhere we have a lambda we could also just name a real subroutine that could go off and do anything.

When all you want to do is see if “given an input variable line, is “stanford” in there?”, it isn’t worth the
digression.

Most modern languages have adopted this nicety.

Common Transformations
Transformation Result

map(func) Return a new RDD by passing each element through func.

filter(func) Return a new RDD by selecting the elements for which func
returns true.

flatMap(func) func can return multiple items, and generate a sequence,
allowing us to “flatten” nested entries (JSON) into a list.

distinct() Return an RDD with only distinct entries.

sample(…) Various options to create a subset of the RDD.

union(RDD) Return a union of the RDDs.

intersection(RDD) Return an intersection of the RDDs.

subtract(RDD) Remove argument RDD from other.

cartesian(RDD) Cartesian product of the RDDs.

parallelize(list) Create an RDD from this (Python) list (using a spark context).

Full list at http://spark.apache.org/docs/latest/api/python/pyspark.html#pyspark.RDD

Common Actions

Transformation Result

collect() Return all the elements from the RDD.

count() Number of elements in RDD.

countByValue() List of times each value occurs in the RDD.

reduce(func) Aggregate the elements of the RDD by providing a function
which combines any two into one (sum, min, max, …).

first(), take(n) Return the first, or first n elements.

top(n) Return the n highest valued elements of the RDDs.

takeSample(…) Various options to return a subset of the RDD..

saveAsTextFile(path) Write the elements as a text file.

foreach(func) Run the func on each element. Used for side-effects (updating
accumulator variables) or interacting with external systems.

Full list at http://spark.apache.org/docs/latest/api/python/pyspark.html#pyspark.RDD

Optimizations
We said one of the advantages of Spark is that we can control things for better
performance. Some of the most effective ways of doing that are:

• Persistence

• Partitioning

We won’t have time to get into these today, but be aware that this kind of control is
available.

Pair RDDs

• Key/Value organization is a simple, but often very efficient schema, as we mentioned
in our NoSQL discussion.

• Spark provides special operations on RDDs that contain key/value pairs. They are
similar to the general ones that we have seen.

• On the language (Python, Scala, Java) side key/values are simply tuples.

Pair RDD Transformations

Transformation Result

reduceByKey(func) Reduce values using func, but on a key by key basis. That is,
combine values with the same key.

groupByKey() Combine values with same key. Each key ends up with a list.

sortByKey() Return an RDD sorted by key.

mapValues(func) Use func to change values, but not key.

keys() Return an RDD of only keys.

values() Return an RDD of only values.

Note that all of the regular transformations are available as well.

Two Pair RDD Transformations

Transformation Result

subtractByKey(otherRDD) Remove elements with a key present in other RDD.

join(otherRDD) Inner join: Return an RDD containing all pairs of elements with
matching keys in self and other. Each pair of elements will be
returned as a (k, (v1, v2)) tuple, where (k, v1) is in self and (k,
v2) is in other.

leftOuterJoin(otherRDD) For each element (k, v) in self, the resulting RDD will either
contain all pairs (k, (v, w)) for w in other, or the pair (k, (v,
None)) if no elements in other have key k.

rightOuterJoin(otherRDD) For each element (k, w) in other, the resulting RDD will either
contain all pairs (k, (v, w)) for v in this, or the pair (k, (None, w))
if no elements in self have key k.

cogroup(otherRDD) Group data from both RDDs by key.

Full list at http://spark.apache.org/docs/latest/api/python/pyspark.html#pyspark.RDD

>>> x = sc.parallelize([("a", 1), ("b", 4)])

>>> y = sc.parallelize([("a", 2), ("a", 3)])

>>> z = x.join(y)

>>> z.collect()
[('a', (1, 2)), ('a', (1, 3))]

Simple Example

Pair RDD Actions

Transformation Result

countByKey() Count the number of elements for each key.

lookup(key) Return all the values for this key.

Full list at http://spark.apache.org/docs/latest/api/python/pyspark.html#pyspark.RDD

As with transformations, all of the regular actions are available to Pair RDDs, and there
are some additional ones that can take advantage of key/value structure.

spark is an existing SparkSession, which precedes all this usage
df = spark.sql("SELECT * FROM table")

Create a DataFrame from the content of a JSON file
df = spark.read.json(“phonebook.json")

Print the schema in a tree format
df.printSchema()

SparkSQL and DataFrames

SparkSQL is a Spark componant that enables SQL (or similar Hive Query Language)
queries. It uses DataFrames, which is a Dataset that has been organized into named
columns. It can allow for some very convenient manipulation:

DataFrames is a new Spark API that allows for some serious optimization due to
knowledge about the data structure. We won’t exploit that today, but it is significant and
a logical extension of the things we will do.

MLlib

MLib rolls in a lot of classic machine learning algorithms. We barely have time to touch
upon this interesting topic today, but they include:

• Useful data types
• Basic Statistics
• Classification (including SVMs, Random Forests)
• Regression
• Dimensionality Reduction (Princ. Comp. Anal., Sing. Val. Decomp.)
• Algorithms (SGD,…)
• Clustering…

Using MLlib

One of the reasons we use spark is for easy access to powerful data analysis tools. The MLlib library
gives us a machine learning library that is easy to use and utilizes the scalability of the Spark system.

It has supported APIs for Python (with NumPy), R, Java and Scala.

We will use the Python version in a generic manner that looks very similar to any of the above
implementations.

There are good example documents for the clustering routine we are using here:

http://spark.apache.org/docs/latest/mllib-clustering.html

And an excellent API reference document here:

http://spark.apache.org/docs/latest/api/python/pyspark.mllib.html#pyspark.mllib.clustering.KMeans

I suggest you use these pages for all your Spark work.

http://spark.apache.org/docs/latest/mllib-clustering.html
http://spark.apache.org/docs/latest/api/python/pyspark.mllib.html#pyspark.mllib.clustering.KMeans

Clustering
Clustering is a very common operation for finding grouping in data and has countless applications. This is a very simple
example, but you will find yourself reaching for a clustering algorithm frequently in pursuing many diverse machine
learning objectives, sometimes as one part of a pipeline.

Weight

S
iz

e

Coin Sorting

Clustering
As intuitive as clustering is, it presents challenges to implement in an efficient and robust manner.

You might think this is trivial to implement in lower dimensional spaces.

But it can get tricky even there.

We will start with 5000 2D points. We want to figure out how many clusters there are, and their centers. Let’s fire up
pyspark and get to it…

Sometimes you know how many clusters you have to start with. Often you don’t.
How hard can it be to count clusters? How many are here?

____ __
/ __/__ ___ _____/ /__
_\ \/ _ \/ _ `/ __/ '_/
/__ / .__/_,_/_/ /_/_\ version 1.6.0

/_/

Using Python version 2.7.5 (default, Nov 20 2015 02:00:19)
SparkContext available as sc, HiveContext available as sqlContext.
>>>
>>> rdd1 = sc.textFile("5000_points.txt")
>>>
>>> rdd2 = rdd1.map(lambda x: x.split())
>>> rdd3 = rdd2.map(lambda x: [int(x[0]),int(x[1])])
>>>
>>> rdd3.persist(StorageLevel.MEMORY_ONLY)
>>>

Finding Clusters

Read into RDD

Transform to words and integers

Let’s keep this around

*RDD map() takes a function to apply to the elements. We can certainly create our own separate function, but lambdas are a way many languages
allow us to define trivial functions “in place”.

br06% interact
...
r288%
r288% module load spark
r288% pyspark

>>> rdd1 = sc.textFile("5000_points.txt")
>>> rdd1.count()
5000
>>> rdd1.take(4)
[u' 664159 550946', u' 665845 557965', u' 597173 575538', u' 618600 551446']
>>> rdd2 = rdd1.map(lambda x:x.split())
>>> rdd2.take(4)
[[u'664159', u'550946'], [u'665845', u'557965'], [u'597173', u'575538'], [u'618600', u'551446']]
>>> rdd3 = rdd2.map(lambda x: [int(x[0]),int(x[1])])
>>> rdd3.take(4)
[[664159, 550946], [665845, 557965], [597173, 575538], [618600, 551446]]
>>>

Finding Our Way

____ __
/ __/__ ___ _____/ /__
_\ \/ _ \/ _ `/ __/ '_/
/__ / .__/_,_/_/ /_/_\ version 1.6.0

/_/

Using Python version 2.7.5 (default, Nov 20 2015 02:00:19)
SparkContext available as sc, HiveContext available as sqlContext.
>>>
>>> rdd1 = sc.textFile("5000_points.txt")
>>>
>>> rdd2 = rdd1.map(lambda x:x.split())
>>> rdd3 = rdd2.map(lambda x: [int(x[0]),int(x[1])])
>>>
>>> rdd3.persist(StorageLevel.MEMORY_ONLY)
>>>
>>> from pyspark.mllib.clustering import KMeans

Finding Clusters

Read into RDD

Transform

Let’s keep this around

Import Kmeans

Finding Clusters

____ __
/ __/__ ___ _____/ /__
_\ \/ _ \/ _ `/ __/ '_/
/__ / .__/_,_/_/ /_/_\ version 1.6.0

/_/

Using Python version 2.7.5 (default, Nov 20 2015 02:00:19)
SparkContext available as sc, HiveContext available as sqlContext.
>>>
>>> rdd1 = sc.textFile("5000_points.txt")
>>>
>>> rdd2 = rdd1.map(lambda x:x.split())
>>> rdd3 = rdd2.map(lambda x: [int(x[0]),int(x[1])])
>>>
>>> rdd3.persist(StorageLevel.MEMORY_ONLY)
>>>
>>> from pyspark.mllib.clustering import KMeans
>>>
>>> for clusters in range(1,30):
... model = KMeans.train(rdd3, clusters)
... print clusters, model.computeCost(rdd3)
...

Finding Clusters

Let’s see results for 1-30 cluster tries

1 5.76807041184e+14
2 3.43183673951e+14
3 2.23097486536e+14
4 1.64792608443e+14
5 1.19410028576e+14
6 7.97690150116e+13
7 7.16451594344e+13
8 4.81469246295e+13
9 4.23762700793e+13
10 3.65230706654e+13
11 3.16991867996e+13
12 2.94369408304e+13
13 2.04031903147e+13
14 1.37018893034e+13
15 8.91761561687e+12
16 1.31833652006e+13
17 1.39010717893e+13
18 8.22806178508e+12
19 8.22513516563e+12
20 7.79359299283e+12
21 7.79615059172e+12
22 7.70001662709e+12
23 7.24231610447e+12
24 7.21990743993e+12
25 7.09395133944e+12
26 6.92577789424e+12
27 6.53939015776e+12
28 6.57782690833e+12
29 6.37192522244e+12

>>> for trials in range(10):
... print
... for clusters in range(12,18):
... model = KMeans.train(rdd3,clusters)
... print clusters, model.computeCost(rdd3)

Right Answer?

12 2.45472346524e+13
13 2.00175423869e+13
14 1.90313863726e+13
15 1.52746006962e+13
16 8.67526114029e+12
17 8.49571894386e+12

12 2.62619056924e+13
13 2.90031673822e+13
14 1.52308079405e+13
15 8.91765957989e+12
16 8.70736515113e+12
17 8.49616440477e+12

12 2.5524719797e+13
13 2.14332949698e+13
14 2.11070395905e+13
15 1.47792736325e+13
16 1.85736955725e+13
17 8.42795740134e+12

12 2.31466242693e+13
13 2.10129797745e+13
14 1.45400177021e+13
15 1.52115329071e+13
16 1.41347332901e+13
17 1.31314086577e+13

12 2.47927778784e+13
13 2.43404436887e+13
14 2.1522702068e+13
15 8.91765000665e+12
16 1.4580927737e+13
17 8.57823507015e+12

12 2.31466520037e+13
13 1.91856542103e+13
14 1.49332023312e+13
15 1.3506302755e+13
16 8.7757678836e+12
17 1.60075548613e+13

12 2.5187054064e+13
13 1.83498739266e+13
14 1.96076943156e+13
15 1.41725666214e+13
16 1.41986217172e+13
17 8.46755159547e+12

12 2.38234539188e+13
13 1.85101922046e+13
14 1.91732620477e+13
15 8.91769396968e+12
16 8.64876051004e+12
17 8.54677681587e+12

12 2.5187054064e+13
13 2.04031903147e+13
14 1.95213876047e+13
15 1.93000628589e+13
16 2.07670831868e+13
17 8.47797102908e+12

12 2.39830397362e+13
13 2.00248378195e+13
14 1.34867337672e+13
15 2.09299321238e+13
16 1.32266735736e+13
17 8.50857884943e+12

>>> for trials in range(10): #Try ten times to find best result
... for clusters in range(12, 16): #Only look in interesting range
... model = KMeans.train(rdd3, clusters)
... cost = model.computeCost(rdd3)
... centers = model.clusterCenters #Let’s grab cluster centers
... if cost<1e+13: #If result is good, print it out
... print clusters, cost
... for coords in centers:
... print int(coords[0]), int(coords[1])
... break
...

Find the Centers

15 8.91761561687e+12
852058 157685
606574 574455
320602 161521
139395 558143
858947 546259
337264 562123
244654 847642
398870 404924
670929 862765
823421 731145
507818 175610
801616 321123
617926 399415
417799 787001
167856 347812
15 8.91765957989e+12
670929 862765
139395 558143
244654 847642
852058 157685
617601 399504
801616 321123
507818 175610
337264 562123
858947 546259
823421 731145
606574 574455
167856 347812
398555 404855
417799 787001
320602 161521

Fit?

0

100000

200000

300000

400000

500000

600000

700000

800000

900000

1000000

0 200000 400000 600000 800000 1000000

Series1

16 Clusters

0

100000

200000

300000

400000

500000

600000

700000

800000

900000

1000000

0 200000 400000 600000 800000 1000000

Series1

0

100000

200000

300000

400000

500000

600000

700000

800000

900000

1000000

0 200000 400000 600000 800000 1000000

Series1

[urbanic@r005 Clustering]$ pyspark
Python 2.7.11 (default, Feb 23 2016, 17:47:07)
[GCC 4.8.5 20150623 (Red Hat 4.8.5-4)] on linux2
Type "help", "copyright", "credits" or "license" for more information.Welcome to

____ __
/ __/__ ___ _____/ /__
_\ \/ _ \/ _ `/ __/ '_/
/__ / .__/_,_/_/ /_/_\ version 2.1.0

/_/

Using Python version 2.7.11 (default, Feb 23 2016 17:47:07)
SparkSession available as 'spark'.
>>>
>>>
>>> execfile("clustering.py")
1 5.76807041184e+14
2 3.73234816206e+14
3 2.13508993715e+14
4 1.38250712993e+14
5 1.2632806251e+14
6 7.97690150116e+13
7 7.14156965883e+13
8 5.7815194802e+13
...
...
...

Run My Programs Or Yours
execfile()

If you have another session window open on
bridge’s login node, you can edit this file, save it
while you remain in the editor, and then run it again
in the python shell window with execfile().

You do not need this second session to be on a
compute node. Do not start another interactive
session.

Shakespeare, a Data Analytics Favorite

Applying data analytics to the works of Shakespeare has become all the rage. Whether determining the legitimacy of
his authorship (it wasn’t Marlowe) or if Othello is actually a comedy (perhaps), it is amazing how much research has
sprung from the recent analysis of 400 year old text.

We’re going to do some exercises here using a text file containing all of his works.

>>> rdd = sc.textFile("Complete_Shakespeare.txt")

Some Simple Problems

We have an input file, Complete _Shakespeare.txt, that you can also find at http://www.gutenberg.org/ebooks/100.

Make sure it is in your current directory. Start “pyspark” and load the data in the usual manner:

Let’s try a few simple exercises.

1) Count the number of lines

2) Count the number of words

3) Count unique words

4) Count the occurrence of each word

5) Show the top 5 most frequent words

These last two are a bit more challenging.
One approach is to think “key/value”. If you
go that way, think about which data should
be the key and don’t be afraid to swap it
about. ‘Nuff said.

http://www.gutenberg.org/ebooks/100

>>> rdd = sc.textFile("Complete_Shakespeare.txt")
>>>
>>> rdd.count()
124787
>>>
>>> rdd.flatMap(lambda x: x.split()).count()
904061
>>>
>>> rdd.flatMap(lambda x: x.split()).distinct().count()
67779
>>>
words = rdd.flatMap(lambda x: x.split())
key_value = words.map(lambda x: (x,1))
>>>
>>> key_value.take(5)
[(u'The', 1), (u'Project', 1), (u'Gutenberg', 1), (u'EBook', 1), (u'of', 1)]
>>>
>>> word_counts = key_value.reduceByKey(lambda x,y: x+y)
>>> word_counts.take(5)
[(u'fawn', 11), (u'considered-', 1), (u'Fame,', 3), (u'mustachio', 1), (u'protested,', 1)]
>>>
flipped = word_counts.map(lambda x: (x[1],x[0]))
>>> flipped.take(5)
[(11, u'fawn'), (1, u'considered-'), (3, u'Fame,'), (1, u'mustachio'), (1, u'protested,')]
>>>
>>> results = flipped.sortByKey(False)
>>> results.take(5)
[(23407, u'the'), (19540, u'I'), (18358, u'and'), (15682, u'to'), (15649, u'of')]
>>>
>>>
results = rdd.flatMap(lambda x: x.split()).map(lambda x: (x,1)).reduceByKey(lambda x,y: x+y).map(lambda x: (x[1],x[0])).sortByKey(False)

Some Simple Answers

Turn these into k/v pairs

Reduce words

Flip keys and values

so we can sort on

wordcount instead of

words.

