
HPC Python Programming

Ramses van Zon

SciNet HPC Consortium, Toronto

IHPCSS, June 2017

Ramses van Zon (SciNet HPC Consortium, Toronto) HPC Python Programming IHPCSS, June 2017 1 / 95

In this session. . .

1 Performance and Python
2 Profiling tools for Python
3 Fast arrays for Python: Numpy
4 Multicore computations:

I Numexpr
I Threading
I Multiprocessing
I Mpi4py

Ramses van Zon (SciNet HPC Consortium, Toronto) HPC Python Programming IHPCSS, June 2017 2 / 95

Getting started

Ramses van Zon (SciNet HPC Consortium, Toronto) HPC Python Programming IHPCSS, June 2017 3 / 95

Packages and code

Requirements for this session
If following along on your own laptop, you need the following packages:

numpy
scipy
numexpr
matplotlib

psutil
line_profiler
memory_profiler
theano

mpi4py
cython

Get the code and setup files on Bridges
Code and installation can be copied from a Bridges. It can be found in the directory
/home/rzon/hpcpy17.

Ramses van Zon (SciNet HPC Consortium, Toronto) HPC Python Programming IHPCSS, June 2017 4 / 95

Setting up for today’s class (Bridges)
To get set up for today’s session, perform the following steps.

1 Login to Bridges

$ ssh -Y -p 2222 USERNAME@bridges.psc.edu

2 Install code and software to your own directory

$ cd ~
$ cp -r /home/rzon/hpcpy17 .
$ cd ~/hpcpy17
$ source setup # very important!

The last command will install a few packages into your local account, so as to satisfy the
requirements, and will load the correct modules.

3 Request an interactive session on a compute node

$ interact -p RM-shared -t 4:00:00 -N 1 --ntasks-per-node=14

Ramses van Zon (SciNet HPC Consortium, Toronto) HPC Python Programming IHPCSS, June 2017 5 / 95

Introduction

Ramses van Zon (SciNet HPC Consortium, Toronto) HPC Python Programming IHPCSS, June 2017 6 / 95

Performance and Python

Python is a high-level, interpreted language.

Those defining features are often at odds with “high performance”.

But the development in Python can be substantially easier (and thus faster) than compiled
languages.

In this session, we will explore when using Python still makes sense and how to get the
most performance out of it, without loosing the flexibility and ease of development.

Ramses van Zon (SciNet HPC Consortium, Toronto) HPC Python Programming IHPCSS, June 2017 7 / 95

What would make Python not “high performance”?

Interpreted language:
Translation to machine language happens line-by-line as the script is read.

Repeated lines are no faster.

Cross-line optimizations are not possible.

Dynamic language:
Types are part of the data: extra overhead

Memory management is automatic. Behind the scene that means reference counting and
garbage collection.

All this also interfers with optimal streaming of data to processor, which interfers with
maximum performance.

Ramses van Zon (SciNet HPC Consortium, Toronto) HPC Python Programming IHPCSS, June 2017 8 / 95

What would make Python not “high performance”?

Interpreted language:
Translation to machine language happens line-by-line as the script is read.

Repeated lines are no faster.

Cross-line optimizations are not possible.

Dynamic language:
Types are part of the data: extra overhead

Memory management is automatic. Behind the scene that means reference counting and
garbage collection.

All this also interfers with optimal streaming of data to processor, which interfers with
maximum performance.

Ramses van Zon (SciNet HPC Consortium, Toronto) HPC Python Programming IHPCSS, June 2017 8 / 95

Example: 2D diffusion equation

Suppose we are interested in the time evolution of the two-dimension diffusion equation:

∂p(x, y, t)
∂t

= D

(
∂2p(x, y, t)

∂x2 +
∂2p(x, y, t)

∂y2

)
,

on domain [x1, x2]⊗ [x1, x2],
with P (x, y, t) = 0 at all times for all points
on the domain boundary, and for some given
initial condition p(x, y, t) = p0(x, y).

Here:

P : density

x, y: spatial coordinates

t: time

D: diffusion constant

Ramses van Zon (SciNet HPC Consortium, Toronto) HPC Python Programming IHPCSS, June 2017 9 / 95

Example: 2D diffusion, result
x1 = −10, x2 = 10, D = 1, four-peak initial condition.

t=0 t=1 t=2

t=4 t=6 t=10

Ramses van Zon (SciNet HPC Consortium, Toronto) HPC Python Programming IHPCSS, June 2017 10 / 95

Example: 2D diffusion, algorithm

Discretize space in both directions (points
dx apart)

Replace derivatives with finite differences.

Explicit finite time stepping scheme (time
step set by dx)

For graphics: Matplotlib for python,
pgplot for c++/fortran, every outtime
time units

Parameters in file diff2dparams.py

Ramses van Zon (SciNet HPC Consortium, Toronto) HPC Python Programming IHPCSS, June 2017 11 / 95

Example: 2D diffusion, parameters

The fortran, C++ and python codes all read the same files (by some special tricks).

diff2dparams.py
D = 1.0;
x1 = -10.0;
x2 = 10.0;
runtime = 15.0;
dx = 0.0667;
outtime = 0.5;
graphics = False;

Ramses van Zon (SciNet HPC Consortium, Toronto) HPC Python Programming IHPCSS, June 2017 12 / 95

Example: 2D diffusion, performance
The files diff2d.cpp, diff2.f90 and diff2d.py contain the same algorithm, in C++,
Fortran, and Python, respectively.

$ etime() { /usr/bin/time -f "Elapsed: %e seconds" $@; }
$ etime make diff2d_cpp.ex diff2d_f90.ex
g++ -c -std=c++11 -O3 -o diff2d_cpp.o diff2d.cpp
gfortran -c -O3 -o pgplot90.o pgplot90.f90
...
Elapsed: 1.80 seconds

$ etime ./diff2d_cpp.ex > output_c.txt
Elapsed: 0.73 seconds
$ etime ./diff2d_f90.ex > output_f.txt
Elapsed: 0.55 seconds
$ etime python diff2d.py > output_n.txt
Elapsed: 132.79 seconds

This doesn’t look too promising for Python for HPC. . .

Ramses van Zon (SciNet HPC Consortium, Toronto) HPC Python Programming IHPCSS, June 2017 13 / 95

Example: 2D diffusion, performance
The files diff2d.cpp, diff2.f90 and diff2d.py contain the same algorithm, in C++,
Fortran, and Python, respectively.

$ etime() { /usr/bin/time -f "Elapsed: %e seconds" $@; }
$ etime make diff2d_cpp.ex diff2d_f90.ex
g++ -c -std=c++11 -O3 -o diff2d_cpp.o diff2d.cpp
gfortran -c -O3 -o pgplot90.o pgplot90.f90
...
Elapsed: 1.80 seconds

$ etime ./diff2d_cpp.ex > output_c.txt
Elapsed: 0.73 seconds
$ etime ./diff2d_f90.ex > output_f.txt
Elapsed: 0.55 seconds
$ etime python diff2d.py > output_n.txt
Elapsed: 132.79 seconds

This doesn’t look too promising for Python for HPC. . .

Ramses van Zon (SciNet HPC Consortium, Toronto) HPC Python Programming IHPCSS, June 2017 13 / 95

Example: 2D diffusion, performance
The files diff2d.cpp, diff2.f90 and diff2d.py contain the same algorithm, in C++,
Fortran, and Python, respectively.

$ etime() { /usr/bin/time -f "Elapsed: %e seconds" $@; }
$ etime make diff2d_cpp.ex diff2d_f90.ex
g++ -c -std=c++11 -O3 -o diff2d_cpp.o diff2d.cpp
gfortran -c -O3 -o pgplot90.o pgplot90.f90
...
Elapsed: 1.80 seconds

$ etime ./diff2d_cpp.ex > output_c.txt
Elapsed: 0.73 seconds
$ etime ./diff2d_f90.ex > output_f.txt
Elapsed: 0.55 seconds
$ etime python diff2d.py > output_n.txt
Elapsed: 132.79 seconds

This doesn’t look too promising for Python for HPC. . .

Ramses van Zon (SciNet HPC Consortium, Toronto) HPC Python Programming IHPCSS, June 2017 13 / 95

Then why do we bother with Python?

#diff2d.py
from diff2dplot import plotdens
from diff2dparams import D,x1,x2,runtime,dx,outtime,graphics
nrows = int((x2-x1)/d
ncols = nrows
npnts = nrows + 2
dx = (x2-x1)/nrows
dt = 0.25*dx**2/D
nsteps = int(runtime/dt)
nper = int(outtime/dt)
if nper==0: nper = 1
x=[x1+((i-1)*(x2-x1))/nrows for i in xrange(npnts)]
dens = [[0.0]*npnts for i in xrange(npnts)]
densnext = [[0.0]*npnts for i in xrange(npnts)]
simtime = 0*dt
for i in range(1,npnts-1):
a = 1 - abs(1 - 4*abs((x[i]-(x1+x2)/2)/(x2-x1)))
for j in range(1,npnts-1):
b = 1 - abs(1 - 4*abs((x[j]-(x1+x2)/2)/(x2-x1)))
dens[i][j] = a*b

print simtime
if graphics: plotdens(dens,x[0],x[-1],first=True)
lapl = [[0.0]*npnts for i in xrange(npnts)]

for s in range(nsteps):
for i in range(1,nrows+1):
for j in range(1,ncols+1):
lapl[i][j] = (dens[i+1][j]+dens[i-1][j]

+dens[i][j+1]+dens[i][j-1]
-4*dens[i][j])

for i in range(1,nrows+1):
for j in range(1,ncols+1):
densnext[i][j]=dens[i][j]+(D/dx**2)*dt*lapl[i][j]

dens, densnext = densnext, dens
simtime += dt
if (s+1)%nper == 0:
print simtime
if graphics: plotdens(dens,x[0],x[-1])# diff2dplot.py

def plotdens(dens,x1,x2,first=False):
import os
import matplotlib.pyplot as plt
if first:
plt.clf(); plt.ion()

plt.imshow(dens,interpolation='none',aspect='equal',extent=(x1,x2,x1,x2),vmin=0.0,vmax=1.0,cmap='spectral')
if first:
plt.colorbar()

plt.show();plt.pause(0.1)

Ramses van Zon (SciNet HPC Consortium, Toronto) HPC Python Programming IHPCSS, June 2017 14 / 95

Then why do we bother with Python?
#diff2d.py
from diff2dplot import plotdens
from diff2dparams import D,x1,x2,runtime,dx,outtime,graphics
nrows = int((x2-x1)/d
ncols = nrows
npnts = nrows + 2
dx = (x2-x1)/nrows
dt = 0.25*dx**2/D
nsteps = int(runtime/dt)
nper = int(outtime/dt)
if nper==0: nper = 1
x=[x1+((i-1)*(x2-x1))/nrows for i in xrange(npnts)]
dens = [[0.0]*npnts for i in xrange(npnts)]
densnext = [[0.0]*npnts for i in xrange(npnts)]
simtime = 0*dt
for i in range(1,npnts-1):
a = 1 - abs(1 - 4*abs((x[i]-(x1+x2)/2)/(x2-x1)))
for j in range(1,npnts-1):
b = 1 - abs(1 - 4*abs((x[j]-(x1+x2)/2)/(x2-x1)))
dens[i][j] = a*b

print simtime
if graphics: plotdens(dens,x[0],x[-1],first=True)
lapl = [[0.0]*npnts for i in xrange(npnts)]

for s in range(nsteps):
for i in range(1,nrows+1):
for j in range(1,ncols+1):
lapl[i][j] = (dens[i+1][j]+dens[i-1][j]

+dens[i][j+1]+dens[i][j-1]
-4*dens[i][j])

for i in range(1,nrows+1):
for j in range(1,ncols+1):
densnext[i][j]=dens[i][j]+(D/dx**2)*dt*lapl[i][j]

dens, densnext = densnext, dens
simtime += dt
if (s+1)%nper == 0:
print simtime
if graphics: plotdens(dens,x[0],x[-1])

diff2dplot.py
def plotdens(dens,x1,x2,first=False):
import os
import matplotlib.pyplot as plt
if first:
plt.clf(); plt.ion()

plt.imshow(dens,interpolation='none',aspect='equal',extent=(x1,x2,x1,x2),vmin=0.0,vmax=1.0,cmap='spectral')
if first:
plt.colorbar()

plt.show();plt.pause(0.1)

Ramses van Zon (SciNet HPC Consortium, Toronto) HPC Python Programming IHPCSS, June 2017 14 / 95

Then why do we bother with Python?
#diff2d.py
from diff2dplot import plotdens
from diff2dparams import D,x1,x2,runtime,dx,outtime,graphics
nrows = int((x2-x1)/d
ncols = nrows
npnts = nrows + 2
dx = (x2-x1)/nrows
dt = 0.25*dx**2/D
nsteps = int(runtime/dt)
nper = int(outtime/dt)
if nper==0: nper = 1
x=[x1+((i-1)*(x2-x1))/nrows for i in xrange(npnts)]
dens = [[0.0]*npnts for i in xrange(npnts)]
densnext = [[0.0]*npnts for i in xrange(npnts)]
simtime = 0*dt
for i in range(1,npnts-1):
a = 1 - abs(1 - 4*abs((x[i]-(x1+x2)/2)/(x2-x1)))
for j in range(1,npnts-1):
b = 1 - abs(1 - 4*abs((x[j]-(x1+x2)/2)/(x2-x1)))
dens[i][j] = a*b

print simtime
if graphics: plotdens(dens,x[0],x[-1],first=True)
lapl = [[0.0]*npnts for i in xrange(npnts)]

for s in range(nsteps):
for i in range(1,nrows+1):
for j in range(1,ncols+1):
lapl[i][j] = (dens[i+1][j]+dens[i-1][j]

+dens[i][j+1]+dens[i][j-1]
-4*dens[i][j])

for i in range(1,nrows+1):
for j in range(1,ncols+1):
densnext[i][j]=dens[i][j]+(D/dx**2)*dt*lapl[i][j]

dens, densnext = densnext, dens
simtime += dt
if (s+1)%nper == 0:
print simtime
if graphics: plotdens(dens,x[0],x[-1])# diff2dplot.py

def plotdens(dens,x1,x2,first=False):
import os
import matplotlib.pyplot as plt
if first:
plt.clf(); plt.ion()

plt.imshow(dens,interpolation='none',aspect='equal',extent=(x1,x2,x1,x2),vmin=0.0,vmax=1.0,cmap='spectral')
if first:
plt.colorbar()

plt.show();plt.pause(0.1)
Ramses van Zon (SciNet HPC Consortium, Toronto) HPC Python Programming IHPCSS, June 2017 14 / 95

Then why do we bother with Python?
Python lends itself easily to writing clear, concise code.
(2d diffusion fits almost on one slide!)

Python is very flexible: large set of very useful packages.

Easy of use→ shorter development time

Python’s performance hit is most prominant on ‘tightly coupled’ calculation on
fundamental data types that are known to the cpu (integers, doubles), which is exactly the
case for the 2d diffusion.

It does much less worse on file I/O, text comparisons, list manipularions etc.

Hooks to compiled libraries to remove worst performance pitfalls.

Once the performance isn’t too bad, we can start thinking of parallelization, i.e., using
more cpu cores working on the
same problem.

Ramses van Zon (SciNet HPC Consortium, Toronto) HPC Python Programming IHPCSS, June 2017 15 / 95

Performance tuning tools for Python

Ramses van Zon (SciNet HPC Consortium, Toronto) HPC Python Programming IHPCSS, June 2017 16 / 95

CPU performance

Performance is about maximizing the utility of a resource.

This could be cpu processing power, memory, network, file I/O, etc.

Let’s focus on cpu performance first.

CPU Profiling by function
To consider the cpu performance of functions, but not of individual lines in your code, there
is the package called cProfile.

CPU Profiling by line
To find cpu performance bottlenecks by line of code, there is package called
line_profiler

Ramses van Zon (SciNet HPC Consortium, Toronto) HPC Python Programming IHPCSS, June 2017 17 / 95

cProfile
Use cProfile or profile to know in which functions your script spends its time.

You usually do this on a smaller but representative case.

The code should be reasonably modular, i.e., with separate functions for different tasks, for
cProfile to be useful.

Example
$ python -m cProfile -s cumulative diff2d.py
...

2492205 function calls in 521.392 seconds

Ordered by: cumulative time

ncalls tottime percall cumtime percall filename:lineno(function)
1 0.028 0.028 521.392 521.392 diff2d.py:11(<module>)
1 515.923 515.923 521.364 521.364 diff2d.py:14(main)

2411800 5.429 0.000 5.429 0.000 {range}
80400 0.012 0.000 0.012 0.000 {abs}

1 0.000 0.000 0.000 0.000 diff2dplot.py:5(<module>)
1 0.000 0.000 0.000 0.000 diff2dparams.py:1(<module>)
1 0.000 0.000 0.000 0.000 {method 'disable' of '_lsprof.Profiler' objects}Ramses van Zon (SciNet HPC Consortium, Toronto) HPC Python Programming IHPCSS, June 2017 18 / 95

line_profiler

Use line_profiler to know, line-by-line, where your script spends its time.

You usually do this on a smaller but representative case.

First thing to do is to have your code be in a function.

You also need to include modify your script slightly:
I Decorate your function with @profile
I Run your script on the command line with

$ kernprof -l -v SCRIPTNAME

Ramses van Zon (SciNet HPC Consortium, Toronto) HPC Python Programming IHPCSS, June 2017 19 / 95

line_profiler script instrumentation

Script before:

x=[1.0]*(2048*2048)
a=str(x[0])
a+="\nis a one\n"
del x
print(a)

Script after:

#file: profileme.py
@profile
def profilewrapper():

x=[1.0]*(2048*2048)
a=str(x[0])
a+="\nis a one\n"
del x
print(a)

profilewrapper()

Run at the command line:

$ kernprof -l -v profileme.py

Ramses van Zon (SciNet HPC Consortium, Toronto) HPC Python Programming IHPCSS, June 2017 20 / 95

line_profiler script instrumentation

Script before:

x=[1.0]*(2048*2048)
a=str(x[0])
a+="\nis a one\n"
del x
print(a)

Script after:

#file: profileme.py
@profile
def profilewrapper():

x=[1.0]*(2048*2048)
a=str(x[0])
a+="\nis a one\n"
del x
print(a)

profilewrapper()

Run at the command line:

$ kernprof -l -v profileme.py

Ramses van Zon (SciNet HPC Consortium, Toronto) HPC Python Programming IHPCSS, June 2017 20 / 95

Output of line_profiler

1.0
is a one

Wrote profile results to profileme.py.lprof
Timer unit: 1e-06 s

Total time: 0.038648 s
File: profileme.py
Function: profilewrapper at line 2

Line # Hits Time Per Hit % Time Line Contents
==

2 @profile
3 def profilewrapper():
4 1 28769 28769.0 74.4 x=[1.0]*(2048*2048)
5 1 22 22.0 0.1 a=str(x[0])
6 1 2 2.0 0.0 a+="\nis a one\n"
7 1 9813 9813.0 25.4 del x
8 1 42 42.0 0.1 print(a)

Ramses van Zon (SciNet HPC Consortium, Toronto) HPC Python Programming IHPCSS, June 2017 21 / 95

Memory performance
Why worry about this?

Once your script runs out of memory, one of a number of things may happen:

Computer may start using the harddrive as memory: very slow

Your application crashes

Your (compute) node crashes

How could you run out of memory?

You’re not quite sure how much memory you program takes.

Python objects may take more memory that expected.

Some functions may temporarily use extra memory.

Python relies on a garbage collector to clean up unused variables.

Ramses van Zon (SciNet HPC Consortium, Toronto) HPC Python Programming IHPCSS, June 2017 22 / 95

Memory performance
Why worry about this?
Once your script runs out of memory, one of a number of things may happen:

Computer may start using the harddrive as memory: very slow

Your application crashes

Your (compute) node crashes

How could you run out of memory?

You’re not quite sure how much memory you program takes.

Python objects may take more memory that expected.

Some functions may temporarily use extra memory.

Python relies on a garbage collector to clean up unused variables.

Ramses van Zon (SciNet HPC Consortium, Toronto) HPC Python Programming IHPCSS, June 2017 22 / 95

Memory performance
Why worry about this?
Once your script runs out of memory, one of a number of things may happen:

Computer may start using the harddrive as memory: very slow

Your application crashes

Your (compute) node crashes

How could you run out of memory?

You’re not quite sure how much memory you program takes.

Python objects may take more memory that expected.

Some functions may temporarily use extra memory.

Python relies on a garbage collector to clean up unused variables.

Ramses van Zon (SciNet HPC Consortium, Toronto) HPC Python Programming IHPCSS, June 2017 22 / 95

Garbage collector
Python uses garbage collector to clean up un-needed variables

You can force the garbage collection to run at any time by running:

>>> import gc
>>> collect = gc.collect()

Running gc by hand should only be done in specific circumstances.

You can also remove objects with del (if object larger than 32MB):

>>> x = [0,0,0,0]
>>> del x
>>> print (x)
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
NameError : name 'x' is not defined

But how would you know when the memory usage is problematic?
Ramses van Zon (SciNet HPC Consortium, Toronto) HPC Python Programming IHPCSS, June 2017 23 / 95

memory_profiler

This module/utility monitors the python memory usage and its changes throughout the run.

Good for catching memory leaks and unexpectedly large memory usage.

Needs same instrumentation as line profiler.

Requires the psutil module (at least on windows, but helps on linux/mac too).

Ramses van Zon (SciNet HPC Consortium, Toronto) HPC Python Programming IHPCSS, June 2017 24 / 95

memory_profiler, details
Your decorated script is usable by memory profiler.
You run your script through the profiler with the command

$ python -m memory_profiler profileme.py

1.0
is a one

Filename: profileme.py

Line # Mem usage Increment Line Contents
==

2 29.094 MiB 0.000 MiB @profile
3 def profilewrapper():
4 61.102 MiB 32.008 MiB x=[1.0]*(2048*2048)
5 61.105 MiB 0.004 MiB a=str(x[0])
6 61.105 MiB 0.000 MiB a+="\nis a one\n"
7 29.102 MiB -32.004 MiB del x
8 29.105 MiB 0.004 MiB print(a)

Ramses van Zon (SciNet HPC Consortium, Toronto) HPC Python Programming IHPCSS, June 2017 25 / 95

memory_profiler, details
Your decorated script is usable by memory profiler.
You run your script through the profiler with the command

$ python -m memory_profiler profileme.py

1.0
is a one

Filename: profileme.py

Line # Mem usage Increment Line Contents
==

2 29.094 MiB 0.000 MiB @profile
3 def profilewrapper():
4 61.102 MiB 32.008 MiB x=[1.0]*(2048*2048)
5 61.105 MiB 0.004 MiB a=str(x[0])
6 61.105 MiB 0.000 MiB a+="\nis a one\n"
7 29.102 MiB -32.004 MiB del x
8 29.105 MiB 0.004 MiB print(a)

Ramses van Zon (SciNet HPC Consortium, Toronto) HPC Python Programming IHPCSS, June 2017 25 / 95

Hands-on

Profile the diff2d.py code
Reduce the resolution in diff2dparams.py, i.e., increase dx to 0.1.

In the same file, set graphics=False.

Add @profile to the main function

Run this through both the line and memory profilers.
I What line(s) cause the most memory usage?
I What line(s) cause the most cpu usage?

Ramses van Zon (SciNet HPC Consortium, Toronto) HPC Python Programming IHPCSS, June 2017 26 / 95

Numpy: faster numerical arrays for python

Ramses van Zon (SciNet HPC Consortium, Toronto) HPC Python Programming IHPCSS, June 2017 27 / 95

Lists aren’t the ideal data type

Lists can do funny things that you don’t
expect, if you’re not careful.

Lists are just a collection of items, of any
type.

If you do mathematical operations on a
list, you won’t get what you expect.

These are not the ideal data type for
scientific computing.

Arrays are a much better choice, but are
not a native Python data type.

>>> a = [1,2,3,4]
>>> a
[1, 2, 3, 4]
>>> b = [3,5,5,6]
>>> b
[3, 5, 5, 6]
>>> 2*a
[1, 2, 3, 4, 1, 2, 3, 4]
>>> a+b
[1, 2, 3, 4, 3, 5, 5, 6]

Ramses van Zon (SciNet HPC Consortium, Toronto) HPC Python Programming IHPCSS, June 2017 28 / 95

Useful arrays: NumPy

Almost everything that you want to do
starts with NumPy.

Contains arrays of various types and
forms: zeros, ones, linspace, etc.

>>> from numpy import zeros, ones
>>> zeros(5)
array([0., 0., 0., 0., 0.])
>>> ones(5, dtype=int)
array([1, 1, 1, 1, 1])
>>> zeros([2,2])
array([[0., 0.],

[0., 0.]])

>>> from numpy import arange
>>> from numpy import linspace
>>> arange(5)
array([0, 1, 2, 3, 4])
>>> linspace(1,5)
array([1. , 1.08163265, 1.16326531, 1.24489796, 1.32653061,

1.40816327, 1.48979592, 1.57142857, 1.65306122, 1.73469388,
1.81632653, 1.89795918, 1.97959184, 2.06122449, 2.14285714,
2.2244898 , 2.30612245, 2.3877551 , 2.46938776, 2.55102041,
2.63265306, 2.71428571, 2.79591837, 2.87755102, 2.95918367,
3.04081633, 3.12244898, 3.20408163, 3.28571429, 3.36734694,
3.44897959, 3.53061224, 3.6122449 , 3.69387755, 3.7755102 ,
3.85714286, 3.93877551, 4.02040816, 4.10204082, 4.18367347,
4.26530612, 4.34693878, 4.42857143, 4.51020408, 4.59183673,
4.67346939, 4.75510204, 4.83673469, 4.91836735, 5.])

>>> linspace(1,5,6)
array([1. , 1.8, 2.6, 3.4, 4.2, 5.])

Ramses van Zon (SciNet HPC Consortium, Toronto) HPC Python Programming IHPCSS, June 2017 29 / 95

Accessing array elements
Elements of arrays are accessed using square brackets.

Python is row-major (like C++, Mathematica), NOT column major (like Fortran,
MATLAB, R)

This means the first index is the row, not the column.

Indexing starts at zero.

>>> from numpy import *
>>> zeros([2,3])
array([[0., 0., 0.],

[0., 0., 0.]])
>>> a = zeros([2,3])
>>> a[1,2] = 1
>>> a[0,1] = 2
>>> a
array([[0., 2., 0.],

[0., 0., 1.]])

>>> a[2,1] = 1
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
IndexError : index 2 is out of bounds for axis 0 with size 2

Ramses van Zon (SciNet HPC Consortium, Toronto) HPC Python Programming IHPCSS, June 2017 30 / 95

Accessing array elements
Elements of arrays are accessed using square brackets.

Python is row-major (like C++, Mathematica), NOT column major (like Fortran,
MATLAB, R)

This means the first index is the row, not the column.

Indexing starts at zero.

>>> from numpy import *
>>> zeros([2,3])
array([[0., 0., 0.],

[0., 0., 0.]])
>>> a = zeros([2,3])
>>> a[1,2] = 1
>>> a[0,1] = 2
>>> a
array([[0., 2., 0.],

[0., 0., 1.]])

>>> a[2,1] = 1
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
IndexError : index 2 is out of bounds for axis 0 with size 2

Ramses van Zon (SciNet HPC Consortium, Toronto) HPC Python Programming IHPCSS, June 2017 30 / 95

Accessing array elements
Elements of arrays are accessed using square brackets.

Python is row-major (like C++, Mathematica), NOT column major (like Fortran,
MATLAB, R)

This means the first index is the row, not the column.

Indexing starts at zero.

>>> from numpy import *
>>> zeros([2,3])
array([[0., 0., 0.],

[0., 0., 0.]])
>>> a = zeros([2,3])
>>> a[1,2] = 1
>>> a[0,1] = 2
>>> a
array([[0., 2., 0.],

[0., 0., 1.]])

>>> a[2,1] = 1
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
IndexError : index 2 is out of bounds for axis 0 with size 2

Ramses van Zon (SciNet HPC Consortium, Toronto) HPC Python Programming IHPCSS, June 2017 30 / 95

Copying array variables

Use caution when copying array variables. There’s a ‘feature’ here that is unexpected.

>>> a = 10; b = a; a = 20
>>> a, b
(20, 10)

>>> import numpy as np
>>> a = np.array([[1,2,3],
... [2,3,4]])
>>> b = a
>>> a[1,0] = -10
>>> a
array([[1, 2, 3],

[-10, 3, 4]])
>>> b
array([[1, 2, 3],

[-10, 3, 4]])

>>> import numpy as np
>>> a = np.array([[1,2,3],
... [2,3,4]])
>>> b = a.copy()
>>> a[1,0] = 16
>>> a
array([[1, 2, 3],

[16, 3, 4]])
>>> b
array([[1, 2, 3],

[2, 3, 4]])

Ramses van Zon (SciNet HPC Consortium, Toronto) HPC Python Programming IHPCSS, June 2017 31 / 95

Matrix arithmetic

vector-vector & vector-scalar multiplication

1-D arrays are often called ‘vectors’.

When vectors are multiplied you get
element-by-element multiplication.

When vectors are multiplied by a scalar (a
0-D array), you also get
element-by-element multiplication.

>>> import numpy as np
>>> a = np.arange(4)
>>> a
array([0, 1, 2, 3])
>>> b = np.arange(4.) + 3
>>> b
array([3., 4., 5., 6.])
>>> c = 2
>>> c
2
>>> a * b
array([0., 4., 10., 18.])
>>> a * c
array([0, 2, 4, 6])
>>> b * c
array([6., 8., 10., 12.])

Ramses van Zon (SciNet HPC Consortium, Toronto) HPC Python Programming IHPCSS, June 2017 32 / 95

Matrix-vector multiplication

A 2-D array is sometimes called a ‘matrix’.

Matrix-scalar multiplication gives
element-by-element multiplication.

With numpy, matrix-vector multiplication
DOES NOT give the standard result!

>>> import numpy as np
>>> a = np.array([[1,2,3],
... [2,3,4]])
>>> a
array([[1, 2, 3],

[2, 3, 4]])
>>> b = np.arange(3) + 1
>>> b
array([1, 2, 3])
>>> a * b
array([[1, 4, 9],

[2, 6, 12]])

Numpy DOES NOT compute this:

[
a11 a12 a13
a21 a22 a23

]
∗

b1
b2
b3

 =
[
a11 ∗ b1 + a12 ∗ b2 + a13 ∗ b3
a21 ∗ b1 + a22 ∗ b2 + a23 ∗ b3

]

Ramses van Zon (SciNet HPC Consortium, Toronto) HPC Python Programming IHPCSS, June 2017 33 / 95

Matrix-vector multiplication

A 2-D array is sometimes called a ‘matrix’.

Matrix-scalar multiplication gives
element-by-element multiplication.

With numpy, matrix-vector multiplication
DOES NOT give the standard result!

>>> import numpy as np
>>> a = np.array([[1,2,3],
... [2,3,4]])
>>> a
array([[1, 2, 3],

[2, 3, 4]])
>>> b = np.arange(3) + 1
>>> b
array([1, 2, 3])
>>> a * b
array([[1, 4, 9],

[2, 6, 12]])

Numpy DOES compute this:

[
a11 a12 a13
a21 a22 a23

]
∗

b1
b2
b3

 =
[
a11 ∗ b1 a12 ∗ b2 a13 ∗ b3
a21 ∗ b1 a22 ∗ b2 a23 ∗ b3

]

Ramses van Zon (SciNet HPC Consortium, Toronto) HPC Python Programming IHPCSS, June 2017 34 / 95

Matrix-matrix multiplication

Not surprisingly, matrix-matrix multiplication
doesn’t work as expected either, instead doing
the same thing as vector-vector multiplication.

>>> import numpy as np
>>> a = np.array([[1,2],
... [4,3]])
>>> b = np.array([[1,2],
... [4,3]])
>>> a
array([[1, 2],

[4, 3]])
>>> a * b
array([[1, 4],

[16, 9]])
Numpy DOES NOT do this: [

a11 a12
a21 a22

]
∗
[
b11 b12
b21 b22

]
=

[
a11 ∗ b11 + a12 ∗ b21 a11 ∗ b12 + a12 ∗ b22
a21 ∗ b11 + a22 ∗ b21 a21 ∗ b12 + a22 ∗ b22

]

Ramses van Zon (SciNet HPC Consortium, Toronto) HPC Python Programming IHPCSS, June 2017 35 / 95

Matrix-matrix multiplication

Not surprisingly, matrix-matrix multiplication
doesn’t work as expected either, instead doing
the same thing as vector-vector multiplication.

>>> import numpy as np
>>> a = np.array([[1,2],
... [4,3]])
>>> b = np.array([[1,2],
... [4,3]])
>>> a
array([[1, 2],

[4, 3]])
>>> a * b
array([[1, 4],

[16, 9]])
Numpy DOES do this: [

a11 a12
a21 a22

]
∗
[
b11 b12
b21 b22

]
=

[
a11 ∗ b11 a12 ∗ b12
a21 ∗ b21 a22 ∗ b22

]

Ramses van Zon (SciNet HPC Consortium, Toronto) HPC Python Programming IHPCSS, June 2017 36 / 95

How to fix the matrix algebra?
There are two solutions to these matrix
multiplication problems.

The specially built-in array fixes (using
‘array’ types).

The matrix module
(using ‘matrix’ types).

The latter option is a bit clunkier, so we
recommend the ‘fixes’.
>>> import numpy as np
>>> a = np.array([[1,2],
... [4,3]])
>>> b = np.array([[1,2],
... [4,3]])
>>> a
array([[1, 2],

[4, 3]])

>>> a.transpose()
array([[1, 4],

[2, 3]])
>>> np.dot(a.transpose(), b)
array([[17, 14],

[14, 13]])
>>> np.dot(b, a.transpose())
array([[5, 10],

[10, 25]])
>>> c = np.arange(2) + 1
>>> np.dot(a,c)
array([5, 10])

Ramses van Zon (SciNet HPC Consortium, Toronto) HPC Python Programming IHPCSS, June 2017 37 / 95

Does changing to numpy really help?

Let’s return to our 2D diffusion example.
Pure python implementation:

$ etime python diff2d.py > output_p.txt
Elapsed: 131.87 seconds

Numpy implementation:

$ etime python diff2d_slow_numpy.py > output_n.txt
Elapsed: 439.40 seconds

Hmm, not really, what gives?

Ramses van Zon (SciNet HPC Consortium, Toronto) HPC Python Programming IHPCSS, June 2017 38 / 95

Does changing to numpy really help?

Let’s return to our 2D diffusion example.
Pure python implementation:

$ etime python diff2d.py > output_p.txt
Elapsed: 131.87 seconds

Numpy implementation:

$ etime python diff2d_slow_numpy.py > output_n.txt
Elapsed: 439.40 seconds

Hmm, not really, what gives?

Ramses van Zon (SciNet HPC Consortium, Toronto) HPC Python Programming IHPCSS, June 2017 38 / 95

Does changing to numpy really help?

Let’s return to our 2D diffusion example.
Pure python implementation:

$ etime python diff2d.py > output_p.txt
Elapsed: 131.87 seconds

Numpy implementation:

$ etime python diff2d_slow_numpy.py > output_n.txt
Elapsed: 439.40 seconds

Hmm, not really, what gives?

Ramses van Zon (SciNet HPC Consortium, Toronto) HPC Python Programming IHPCSS, June 2017 38 / 95

Python overhead
Python’s overhead comes mainly from it’s interpreted nature.

The diff2d_slow_numpy.py code uses numpy arrays, but still has a loop over indiced.

Numpy will not give much speedup until you use it ‘vector’ operations.

E.g., instead of
a = np.linspace(0.0,1.0,101)
b = np.linspace(1.0,2.0,101)
c = np.ndarray(100)
for i in xrange(100):

c[i] = a[i] + b[i+1]

You would write:
a = np.linspace(0.0,1.0,100)
b = np.linspace(1.0,2.0,100)
c = a + b

And to deal with shifts, instead of
a = np.linspace(0.0,1.0,101)
b = np.linspace(1.0,2.0,101)
c = np.ndarray(100)
for i in xrange(100):

c[i] = a[i] + b[i+1]

You would write:
a = np.linspace(0.0,1.0,101)
b = np.linspace(1.0,2.0,101)
c = a[0:100] + b[1:101]

Ramses van Zon (SciNet HPC Consortium, Toronto) HPC Python Programming IHPCSS, June 2017 39 / 95

Python overhead
Python’s overhead comes mainly from it’s interpreted nature.

The diff2d_slow_numpy.py code uses numpy arrays, but still has a loop over indiced.

Numpy will not give much speedup until you use it ‘vector’ operations.

E.g., instead of
a = np.linspace(0.0,1.0,101)
b = np.linspace(1.0,2.0,101)
c = np.ndarray(100)
for i in xrange(100):

c[i] = a[i] + b[i+1]

You would write:
a = np.linspace(0.0,1.0,100)
b = np.linspace(1.0,2.0,100)
c = a + b

And to deal with shifts, instead of
a = np.linspace(0.0,1.0,101)
b = np.linspace(1.0,2.0,101)
c = np.ndarray(100)
for i in xrange(100):

c[i] = a[i] + b[i+1]

You would write:
a = np.linspace(0.0,1.0,101)
b = np.linspace(1.0,2.0,101)
c = a[0:100] + b[1:101]

Ramses van Zon (SciNet HPC Consortium, Toronto) HPC Python Programming IHPCSS, June 2017 39 / 95

Python overhead
Python’s overhead comes mainly from it’s interpreted nature.

The diff2d_slow_numpy.py code uses numpy arrays, but still has a loop over indiced.

Numpy will not give much speedup until you use it ‘vector’ operations.

E.g., instead of
a = np.linspace(0.0,1.0,101)
b = np.linspace(1.0,2.0,101)
c = np.ndarray(100)
for i in xrange(100):

c[i] = a[i] + b[i+1]

You would write:

a = np.linspace(0.0,1.0,100)
b = np.linspace(1.0,2.0,100)
c = a + b

And to deal with shifts, instead of
a = np.linspace(0.0,1.0,101)
b = np.linspace(1.0,2.0,101)
c = np.ndarray(100)
for i in xrange(100):

c[i] = a[i] + b[i+1]

You would write:
a = np.linspace(0.0,1.0,101)
b = np.linspace(1.0,2.0,101)
c = a[0:100] + b[1:101]

Ramses van Zon (SciNet HPC Consortium, Toronto) HPC Python Programming IHPCSS, June 2017 39 / 95

Python overhead
Python’s overhead comes mainly from it’s interpreted nature.

The diff2d_slow_numpy.py code uses numpy arrays, but still has a loop over indiced.

Numpy will not give much speedup until you use it ‘vector’ operations.

E.g., instead of
a = np.linspace(0.0,1.0,101)
b = np.linspace(1.0,2.0,101)
c = np.ndarray(100)
for i in xrange(100):

c[i] = a[i] + b[i+1]

You would write:
a = np.linspace(0.0,1.0,100)
b = np.linspace(1.0,2.0,100)
c = a + b

And to deal with shifts, instead of
a = np.linspace(0.0,1.0,101)
b = np.linspace(1.0,2.0,101)
c = np.ndarray(100)
for i in xrange(100):

c[i] = a[i] + b[i+1]

You would write:
a = np.linspace(0.0,1.0,101)
b = np.linspace(1.0,2.0,101)
c = a[0:100] + b[1:101]

Ramses van Zon (SciNet HPC Consortium, Toronto) HPC Python Programming IHPCSS, June 2017 39 / 95

Python overhead
Python’s overhead comes mainly from it’s interpreted nature.

The diff2d_slow_numpy.py code uses numpy arrays, but still has a loop over indiced.

Numpy will not give much speedup until you use it ‘vector’ operations.

E.g., instead of
a = np.linspace(0.0,1.0,101)
b = np.linspace(1.0,2.0,101)
c = np.ndarray(100)
for i in xrange(100):

c[i] = a[i] + b[i+1]

You would write:
a = np.linspace(0.0,1.0,100)
b = np.linspace(1.0,2.0,100)
c = a + b

And to deal with shifts, instead of
a = np.linspace(0.0,1.0,101)
b = np.linspace(1.0,2.0,101)
c = np.ndarray(100)
for i in xrange(100):

c[i] = a[i] + b[i+1]

You would write:
a = np.linspace(0.0,1.0,101)
b = np.linspace(1.0,2.0,101)
c = a[0:100] + b[1:101]

Ramses van Zon (SciNet HPC Consortium, Toronto) HPC Python Programming IHPCSS, June 2017 39 / 95

Python overhead
Python’s overhead comes mainly from it’s interpreted nature.

The diff2d_slow_numpy.py code uses numpy arrays, but still has a loop over indiced.

Numpy will not give much speedup until you use it ‘vector’ operations.

E.g., instead of
a = np.linspace(0.0,1.0,101)
b = np.linspace(1.0,2.0,101)
c = np.ndarray(100)
for i in xrange(100):

c[i] = a[i] + b[i+1]

You would write:
a = np.linspace(0.0,1.0,100)
b = np.linspace(1.0,2.0,100)
c = a + b

And to deal with shifts, instead of
a = np.linspace(0.0,1.0,101)
b = np.linspace(1.0,2.0,101)
c = np.ndarray(100)
for i in xrange(100):

c[i] = a[i] + b[i+1]

You would write:

a = np.linspace(0.0,1.0,101)
b = np.linspace(1.0,2.0,101)
c = a[0:100] + b[1:101]

Ramses van Zon (SciNet HPC Consortium, Toronto) HPC Python Programming IHPCSS, June 2017 39 / 95

Python overhead
Python’s overhead comes mainly from it’s interpreted nature.

The diff2d_slow_numpy.py code uses numpy arrays, but still has a loop over indiced.

Numpy will not give much speedup until you use it ‘vector’ operations.

E.g., instead of
a = np.linspace(0.0,1.0,101)
b = np.linspace(1.0,2.0,101)
c = np.ndarray(100)
for i in xrange(100):

c[i] = a[i] + b[i+1]

You would write:
a = np.linspace(0.0,1.0,100)
b = np.linspace(1.0,2.0,100)
c = a + b

And to deal with shifts, instead of
a = np.linspace(0.0,1.0,101)
b = np.linspace(1.0,2.0,101)
c = np.ndarray(100)
for i in xrange(100):

c[i] = a[i] + b[i+1]

You would write:
a = np.linspace(0.0,1.0,101)
b = np.linspace(1.0,2.0,101)
c = a[0:100] + b[1:101]

Ramses van Zon (SciNet HPC Consortium, Toronto) HPC Python Programming IHPCSS, June 2017 39 / 95

Hands-on

Vectorize the slow numpy code
Copy diff2d_slow_numpy.py to diff2d_numpy

Try to replace the indexed loops with whole-array vector operations

Ramses van Zon (SciNet HPC Consortium, Toronto) HPC Python Programming IHPCSS, June 2017 40 / 95

Does changing to numpy really help?
Let’s return to our 2D diffusion example.
Pure python implementation:

$ etime python diff2d.py > output_p.txt
Elapsed: 132.19 seconds

Numpy implementation:

$ etime python diff2d_numpy.py > output_n.txt
Elapsed: 4.46 seconds

However, this is what the compiled versions do:

$ etime ./diff2d_cpp.ex > output_c.txt
Elapsed: 0.73 seconds
$ etime ./diff2d_f90.ex > output_f.txt
Elapsed: 0.56 seconds

So python+numpy is still 8× slower than compiled.

Ramses van Zon (SciNet HPC Consortium, Toronto) HPC Python Programming IHPCSS, June 2017 41 / 95

Does changing to numpy really help?
Let’s return to our 2D diffusion example.
Pure python implementation:

$ etime python diff2d.py > output_p.txt
Elapsed: 132.19 seconds

Numpy implementation:

$ etime python diff2d_numpy.py > output_n.txt
Elapsed: 4.46 seconds

However, this is what the compiled versions do:

$ etime ./diff2d_cpp.ex > output_c.txt
Elapsed: 0.73 seconds
$ etime ./diff2d_f90.ex > output_f.txt
Elapsed: 0.56 seconds

So python+numpy is still 8× slower than compiled.

Ramses van Zon (SciNet HPC Consortium, Toronto) HPC Python Programming IHPCSS, June 2017 41 / 95

Does changing to numpy really help?
Let’s return to our 2D diffusion example.
Pure python implementation:

$ etime python diff2d.py > output_p.txt
Elapsed: 132.19 seconds

Numpy implementation:

$ etime python diff2d_numpy.py > output_n.txt
Elapsed: 4.46 seconds

However, this is what the compiled versions do:

$ etime ./diff2d_cpp.ex > output_c.txt
Elapsed: 0.73 seconds
$ etime ./diff2d_f90.ex > output_f.txt
Elapsed: 0.56 seconds

So python+numpy is still 8× slower than compiled.
Ramses van Zon (SciNet HPC Consortium, Toronto) HPC Python Programming IHPCSS, June 2017 41 / 95

What about Cython?
Cython is a compiler for python code.

Almost all python is valid cython.

Typically used for packages, to be used in regular python scripts.

It is important to realize that the compilation preserves the pythonic nature of the
language, i.e, garbage collection, range checking, reference counting, etc, are still done: no
performance enhancement.

$ etime python diff2d_numpy.py > output_n.txt
Elapsed: 4.46 seconds
$ etime python diff2d_numpy_cython.py > output_nc.txt
Elapsed: 5.49 seconds

If you want to get around that, you need to use Cython specific extentions that essentially
use c types.

From that point on, though, is it still python?
Ramses van Zon (SciNet HPC Consortium, Toronto) HPC Python Programming IHPCSS, June 2017 42 / 95

Out-of-core computations

Ramses van Zon (SciNet HPC Consortium, Toronto) HPC Python Programming IHPCSS, June 2017 43 / 95

Out-of-core computation

Some problems require doing fairly simple analysis on data that is too large to fit into
memory

I Min/mean/max
I Data cleaning
I Even linear fitting is pretty simple

In this case, one processor may be enough; you just want a way to not run out of memory.

“Out of core” or “external memory” computation leaves the data on disk, bringing into
memory only what is needed, or what fits, at any given time.

For some computations, this works out well (but note: disk access is always much slower
than memory access).

Ramses van Zon (SciNet HPC Consortium, Toronto) HPC Python Programming IHPCSS, June 2017 44 / 95

Out-of-core computation, continued

The numpy.memmap class creates a
memory-map to an array stored in a
binary file on disk. This allows a
file-backed out-of-memory computation,
but only on numpy arrays.

This approach works well when one’s data
access involves passing through an entire
data sets a small number of times.

There are other techniques for Python
out-of-core computations, involving the
combined use of pytables, hdf5, and
numpy, but we won’t cover them today.

Ramses van Zon (SciNet HPC Consortium, Toronto) HPC Python Programming IHPCSS, June 2017 45 / 95

Out-of-core computation, example

First, let us create a large array on file (don’t actually perform these steps on Bridges)

#file: create12GB.py
import numpy as np
n = 40000
f = np.memmap('bigfile', dtype='float64', mode='w+', shape=(n,n))
for i in xrange(n):

f[i,:] = np.random.rand(n)

initial fragment:
[0. 0. 0. 0. 0.]
random fragment:
[0.94379592 0.17967309 0.7169163 0.44854681 0.41266199]
done

Ramses van Zon (SciNet HPC Consortium, Toronto) HPC Python Programming IHPCSS, June 2017 46 / 95

Out-of-core computation, example
Exit the python prompt, and start over to calculate the mean of the array:

#file: average12GB.py
import numpy as np
n = 40000
f = np.memmap('bigfile', mode='r', shape=(n,n))
total = 0.0
for i in xrange(n): total += sum(f[i,:])
average = total / (n*n)
print(average)

130.186355131

This can be very hard on the file system!
Other good use of this technique:

You have an array that is larger than would fit in memory

You need only relatively few elements of the array

But you do not know ahead of time which elements.
Ramses van Zon (SciNet HPC Consortium, Toronto) HPC Python Programming IHPCSS, June 2017 47 / 95

Parallel Python

Ramses van Zon (SciNet HPC Consortium, Toronto) HPC Python Programming IHPCSS, June 2017 48 / 95

Parallel Python

We will look at a number of approached to parallel programming with Python:

Package Functionality

numexpr threaded parallelization of certain numpy expressions
threads create threads sharing memory
multiprocessing create processes that behave more like threads
mpi4py message passing between processes

Ramses van Zon (SciNet HPC Consortium, Toronto) HPC Python Programming IHPCSS, June 2017 49 / 95

Numexpr

Ramses van Zon (SciNet HPC Consortium, Toronto) HPC Python Programming IHPCSS, June 2017 50 / 95

The numexpr package

The numexpr package is useful if you’re doing matrix algebra:

It is essentially a just-in-time compiler for NumPy.

It takes matrix expressions, breaks things up into threads, and does the calculation in
parallel.

Somewhat awkwardly, it takes it’s input in as a string.

In some situations using numexpr can significantly speed up your calculations.

Ramses van Zon (SciNet HPC Consortium, Toronto) HPC Python Programming IHPCSS, June 2017 51 / 95

Numexpr in a nutshell

Give it an array artihmetic expression, and it will compile and run it, and return or store the
output.

Supported operators:
+, -, *, /, **, %, <<, >>, <, <=, ==, !=, >=, >, &, |, ~

Supported functions:
where, sin, cos, tan, arcsin, arccos arctan, arctan2, sinh, cosh, tanh, arcsinh,
arccosh arctanh, log, log10, log1p, exp, expm1, sqrt, abs, conj, real, imag,
complex, contains.

Supported reductions:
sum, product

Ramses van Zon (SciNet HPC Consortium, Toronto) HPC Python Programming IHPCSS, June 2017 52 / 95

Using the numexpr package
Without numexpr:

>>> from etime import etime
>>> import numpy as np
>>> import numexpr as ne
>>> a = np.random.rand(1000000)
>>> b = np.random.rand(1000000)
>>> c = np.zeros(1000000)
>>> etime("c = a**2 + b**2 + 2*a*b", "a,b,c")
Elapsed: 0.00942203998566 seconds

Note: The python function etime measures the elapsed time. It is defined in the file etime.py
that is part of the code of this session. The second argument should list the variables used
(though some will be picked up automatically).
Ipython has its own version of this, invoked (without quotes) as

In [10]: %time c = a**2 + b**2 +2*a*b

Ramses van Zon (SciNet HPC Consortium, Toronto) HPC Python Programming IHPCSS, June 2017 53 / 95

Using the numexpr package

With numexpr:

>>> from etime import etime
>>> import numpy as np
>>> import numexpr as ne
>>> a = np.random.rand(1000000)
>>> b = np.random.rand(1000000)
>>> c = np.zeros(1000000)
>>> etime("c = a**2 + b**2 + 2*a*b")
Elapsed: 0.0147772550583 seconds
>>> old = ne.set_num_threads(1)
>>> etime("ne.evaluate('a**2 + b**2 + 2*a*b',out=c)", "a,b,c")
Elapsed: 0.00505665540695 seconds
>>> old = ne.set_num_threads(2)
>>> etime("ne.evaluate('a**2 + b**2 + 2*a*b',out=c)", "a,b,c")
Elapsed: 0.0029923081398 seconds

Ramses van Zon (SciNet HPC Consortium, Toronto) HPC Python Programming IHPCSS, June 2017 54 / 95

Numexpr for the diffusion example

Annoyingly, numexpr has no facilities for slicing or offsets, etc.

This is troubling for our diffusion code, in which we have to do something like
laplacian[1:nrows+1,1:ncols+1] = (dens[2:nrows+2,1:ncols+1]

+ dens[0:nrows+0,1:ncols+1]
+ dens[1:nrows+1,2:ncols+2]
+ dens[1:nrows+1,0:ncols+0]
- 4*dens[1:nrows+1,1:ncols+1])

We would need to make a copy of dens[2:nrows+2,1:ncols+1] etc. into a new numpy
array before we can use numexpr, but copies are expensive.

We want numexpr to use the same data as in dens, but viewed differently.

Ramses van Zon (SciNet HPC Consortium, Toronto) HPC Python Programming IHPCSS, June 2017 55 / 95

Numexpr for the diffusion example (cont.)

We want numexpr to use the same data as in dens, but viewed differently.

That is tricky, and requires knowledge of the data’s memory structure.

diff2d_numexpr.py shows one possible solution.

$ etime python diff2d_numpy.py > diff2d_numpy.out
Elapsed: 4.46 seconds
$ export OMP_NUM_THREADS=14
$ etime python diff2d_numexpr.py > diff2d_numexpr.out
Elapsed: 2.26 seconds

Ramses van Zon (SciNet HPC Consortium, Toronto) HPC Python Programming IHPCSS, June 2017 56 / 95

Theano

Theano is a numerical computation library.

Much like numexpr, it takes an (array) expression and compiles it.

Theano is frequently use in machine learning applications.
(But Tensorflow is quickly gaining ground in this arena.)

Unlike numexpr, it can use multi-dimensional arrays and slices, like NumPy.

Unlike numexpr, it does not natively use threads (though it may link to multithreaded blas
libraries).

Theano can use GPUs, but you’re programming them like CUDA, not like OpenACC.

Ramses van Zon (SciNet HPC Consortium, Toronto) HPC Python Programming IHPCSS, June 2017 57 / 95

Theano in the diffusion equation
For the diffusion code, only the computation of the laplacian changes

t_dens = theano.tensor.dmatrix('dens')
t_laplacian = (t_dens[2:nrows+2,1:ncols+1] +

t_dens[0:nrows+0,1:ncols+1] +
t_dens[1:nrows+1,2:ncols+2] +
t_dens[1:nrows+1,0:ncols+0] -
4*t_dens[1:nrows+1,1:ncols+1])

t_laplacian_fun = theano.function([t_dens], t_laplacian)
laplacian[1:nrows+1,1:ncols+1] = t_laplacian_fun(dens)

Worth it, using 14 cores?
$ etime python diff2d_numpy.py
Elapsed: 4.87 seconds
$ export OMP_NUM_THREADS=14
$ etime python diff2d_numexpr.py
Elapsed: 1.25 seconds
$ etime python diff2d_theano.py
Elapsed: 2.79 seconds

Numexpr wins. . . .

How about serially?

$ #with "ne.set_num_threads(1)"
$ etime python diff2d_numexpr.py
Elapsed: 3.01 seconds
$ etime python diff2d_theano.py
Elapsed: 2.74 seconds

Theano wins serially (just, and not always).

Ramses van Zon (SciNet HPC Consortium, Toronto) HPC Python Programming IHPCSS, June 2017 58 / 95

Theano in the diffusion equation
For the diffusion code, only the computation of the laplacian changes

t_dens = theano.tensor.dmatrix('dens')
t_laplacian = (t_dens[2:nrows+2,1:ncols+1] +

t_dens[0:nrows+0,1:ncols+1] +
t_dens[1:nrows+1,2:ncols+2] +
t_dens[1:nrows+1,0:ncols+0] -
4*t_dens[1:nrows+1,1:ncols+1])

t_laplacian_fun = theano.function([t_dens], t_laplacian)
laplacian[1:nrows+1,1:ncols+1] = t_laplacian_fun(dens)

Worth it, using 14 cores?

$ etime python diff2d_numpy.py
Elapsed: 4.87 seconds
$ export OMP_NUM_THREADS=14
$ etime python diff2d_numexpr.py
Elapsed: 1.25 seconds
$ etime python diff2d_theano.py
Elapsed: 2.79 seconds

Numexpr wins. . . .

How about serially?

$ #with "ne.set_num_threads(1)"
$ etime python diff2d_numexpr.py
Elapsed: 3.01 seconds
$ etime python diff2d_theano.py
Elapsed: 2.74 seconds

Theano wins serially (just, and not always).

Ramses van Zon (SciNet HPC Consortium, Toronto) HPC Python Programming IHPCSS, June 2017 58 / 95

Theano in the diffusion equation
For the diffusion code, only the computation of the laplacian changes

t_dens = theano.tensor.dmatrix('dens')
t_laplacian = (t_dens[2:nrows+2,1:ncols+1] +

t_dens[0:nrows+0,1:ncols+1] +
t_dens[1:nrows+1,2:ncols+2] +
t_dens[1:nrows+1,0:ncols+0] -
4*t_dens[1:nrows+1,1:ncols+1])

t_laplacian_fun = theano.function([t_dens], t_laplacian)
laplacian[1:nrows+1,1:ncols+1] = t_laplacian_fun(dens)

Worth it, using 14 cores?
$ etime python diff2d_numpy.py
Elapsed: 4.87 seconds
$ export OMP_NUM_THREADS=14
$ etime python diff2d_numexpr.py
Elapsed: 1.25 seconds
$ etime python diff2d_theano.py
Elapsed: 2.79 seconds

Numexpr wins. . . .

How about serially?

$ #with "ne.set_num_threads(1)"
$ etime python diff2d_numexpr.py
Elapsed: 3.01 seconds
$ etime python diff2d_theano.py
Elapsed: 2.74 seconds

Theano wins serially (just, and not always).

Ramses van Zon (SciNet HPC Consortium, Toronto) HPC Python Programming IHPCSS, June 2017 58 / 95

Theano in the diffusion equation
For the diffusion code, only the computation of the laplacian changes

t_dens = theano.tensor.dmatrix('dens')
t_laplacian = (t_dens[2:nrows+2,1:ncols+1] +

t_dens[0:nrows+0,1:ncols+1] +
t_dens[1:nrows+1,2:ncols+2] +
t_dens[1:nrows+1,0:ncols+0] -
4*t_dens[1:nrows+1,1:ncols+1])

t_laplacian_fun = theano.function([t_dens], t_laplacian)
laplacian[1:nrows+1,1:ncols+1] = t_laplacian_fun(dens)

Worth it, using 14 cores?
$ etime python diff2d_numpy.py
Elapsed: 4.87 seconds
$ export OMP_NUM_THREADS=14
$ etime python diff2d_numexpr.py
Elapsed: 1.25 seconds
$ etime python diff2d_theano.py
Elapsed: 2.79 seconds

Numexpr wins. . . .

How about serially?

$ #with "ne.set_num_threads(1)"
$ etime python diff2d_numexpr.py
Elapsed: 3.01 seconds
$ etime python diff2d_theano.py
Elapsed: 2.74 seconds

Theano wins serially (just, and not always).

Ramses van Zon (SciNet HPC Consortium, Toronto) HPC Python Programming IHPCSS, June 2017 58 / 95

Another compiler-within: Numba

Numba allows compilation of selected portions of Python code to native code.

Decorator based: compile a function.

It can use multi-dimensional arrays and slices, like NumPy.

Very convenient.

Downsides:
I While it can also vectorize, multi-core parallelize and push to a gpu, it can only do so for

specific, independent, non-sliced data.
I Requires LLVM be installed.

Ramses van Zon (SciNet HPC Consortium, Toronto) HPC Python Programming IHPCSS, June 2017 59 / 95

Numba in the diffusion equation

For the diffusion code, we change the time step to a function with a decorator:

Before:

Take one step to produce new density.
laplacian[1:nrows+1,1:ncols+1] = dens[2:nrows+2,1:ncols+1] + dens[0:nrows+0,1:ncols+1] + dens[1:nrows+1,2:ncols+2] + dens[1:nrows+1,0:ncols+0] - 4*dens[1:nrows+1,1:ncols+1]
densnext[:,:] = dens + (D/dx**2)*dt*laplacian

$ etime python diff2d_numpy.py
Elapsed: 4.46 seconds

After:

from number import autojit
@autojit
def timestep(laplacian,dens,densnext,nrows,ncols,D,dx,dt):

laplacian[1:nrows+1,1:ncols+1] = dens[2:nrows+2,1:ncols+1] + dens[0:nrows+0,1:ncols+1] + dens[1:nrows+1,2:ncols+2] + dens[1:nrows+1,0:ncols+0] - 4*dens[1:nrows+1,1:ncols+1]
densnext[:,:] = dens + (D/dx**2)*dt*laplacian

...
Take one step to produce new density.
timestep(laplacian,dens,densnext,nrows,ncols,D,dx,dt)

$ etime python diff2d_numba.py

Unfortunately, numba requires llvm, which I couldn’t find on Bridges, and for which a local
install in your $HOME would exceed your 10GB quote (as I found out yesterday night).

Ramses van Zon (SciNet HPC Consortium, Toronto) HPC Python Programming IHPCSS, June 2017 60 / 95

Processes and threads in python

Ramses van Zon (SciNet HPC Consortium, Toronto) HPC Python Programming IHPCSS, June 2017 61 / 95

Processes and threads in python

If you’ve followed the ‘mpi/openmp’ sessions, you have heard that

A process provides the resources needed to execute a program. A thread is a path of
execution within a process. As such, a process contains at least one thread, possibly many.

A process contains a considerable amount of state information (handles to system objects,
PID, address space, . . .). As such they are more resource-intensive to create. Threads are
very light-weight in comparison.

Threads within the same process share the same address space. This means they can share
the same memory and can easily communicate with each other.

Different processes do not share the same address space. Different processes can only
communicate with each other through OS-supplied mechanisms.

Ramses van Zon (SciNet HPC Consortium, Toronto) HPC Python Programming IHPCSS, June 2017 62 / 95

Threads in Python

Ramses van Zon (SciNet HPC Consortium, Toronto) HPC Python Programming IHPCSS, June 2017 63 / 95

Threads in Python

The good news is: Python has threads.

The not-so-good news is: No convenient OpenMP launching of threads.

The worse news: you’ll see . . .

Ramses van Zon (SciNet HPC Consortium, Toronto) HPC Python Programming IHPCSS, June 2017 64 / 95

How much faster is it using threads?
summer.py - used in all summer*py
def my_summer(start, stop):

tot = 0
for i in xrange(start,stop):

tot += i

summer_serial.py
import time
from summer import my_summer
begin = time.time()
threads = []
for i in range(10):

my_summer(0, 5000000)
print "Elapsed:", time.time() - begin,"seconds"

summer_threaded.py
import time, threading
from summer import my_summer

begin = time.time()
threads = []

for i in range(10):
t = threading.Thread(

target = my_summer,
args = (0, 5000000))

threads.append(t)
t.start()

Wait for all threads to finish.
for t in threads: t.join()
print ("Elasped: %f"%
time.time() - begin,"seconds")

Timings
$ python summer_serial.py
Elapsed: 11.58 seconds
$ python summer_threaded.py
Elapsed: 38.48 seconds

Ramses van Zon (SciNet HPC Consortium, Toronto) HPC Python Programming IHPCSS, June 2017 65 / 95

How much faster is it using threads?
summer.py - used in all summer*py
def my_summer(start, stop):

tot = 0
for i in xrange(start,stop):

tot += i

summer_serial.py
import time
from summer import my_summer
begin = time.time()
threads = []
for i in range(10):

my_summer(0, 5000000)
print "Elapsed:", time.time() - begin,"seconds"

summer_threaded.py
import time, threading
from summer import my_summer

begin = time.time()
threads = []

for i in range(10):
t = threading.Thread(

target = my_summer,
args = (0, 5000000))

threads.append(t)
t.start()

Wait for all threads to finish.
for t in threads: t.join()
print ("Elasped: %f"%
time.time() - begin,"seconds")Timings

$ python summer_serial.py
Elapsed: 11.58 seconds
$ python summer_threaded.py
Elapsed: 38.48 seconds

Ramses van Zon (SciNet HPC Consortium, Toronto) HPC Python Programming IHPCSS, June 2017 65 / 95

Not faster at all, slower!

The threading code is no faster than the serial code. Why?

The Python Interpreter uses the Global Interpreter Lock (GIL).

To prevent race conditions, the GIL prevents threads from the same Python program from
running simultaneously. As such, only one core is used at any given time.

Consequently the threaded code is no faster than the serial code, and is generally slower
due to thread-creation overhead.

As a general rule, threads are not used for most Python applications (GUIs being one
important exception). This example is for demonstration purposes only.

Instead, we will use one of several other modules, depending on the application in question.
These modules will launch subprocesses, rather than threads.

Ramses van Zon (SciNet HPC Consortium, Toronto) HPC Python Programming IHPCSS, June 2017 66 / 95

Forking

Ramses van Zon (SciNet HPC Consortium, Toronto) HPC Python Programming IHPCSS, June 2017 67 / 95

Forking

For python, the ancient way of parallel programming is a funny intermediate called
“Forking”, that can create processes on the same node.

We will skip forking, as it is tedious, but I’ve included some slides for those interested.

Ramses van Zon (SciNet HPC Consortium, Toronto) HPC Python Programming IHPCSS, June 2017 68 / 95

Forking (linux specific)
Another simple way to run code in parallel is to
“fork” the process.

The system call fork() creates a copy of
the process that called it, and runs it as a
child process.
The child gets ALL the data of the parent
process.
The child gets its own process number
(PID), and as such runs independently of
the parent.
We use the return value of fork() to
determine which process we are; 0 means
we’re the child.
Probably doesn’t work in windows

firstfork.py
import os

Our child process.
def child():

print "Hello from", os.getpid()
os._exit(0)

The parent process.
while (True):

newpid = os.fork()
if newpid == 0:

child()
else:

print "Hello from parent", os.getpid(), newpid

if raw_input() == "q": break

Ramses van Zon (SciNet HPC Consortium, Toronto) HPC Python Programming IHPCSS, June 2017 69 / 95

Process forking, continued

What does that look like?

$ python firstfork.py
Hello from parent 27089 27090
Hello from 27090
q
$

Ramses van Zon (SciNet HPC Consortium, Toronto) HPC Python Programming IHPCSS, June 2017 70 / 95

Forking/executing

What if we prefer to run a completely different
code, rather than copying the existing code to
the child?

we can run one of the os.exec series of
functions.

The os.execlp call replaces the currently
running program with the new one
specified, in the child process only.

If os.execlp is successful at lauching the
program, it never returns. Hence the
assert statement is only invoked if
something goes wrong.

child.py
import os
print "Hello from", os.getpid()
os._exit(0)

secondfork.py
import os

while (True):
pid = os.fork()
if pid == 0:

os.execlp("python", "python",
"child.py")

assert False, "Error starting program"
else:

print "The child is", pid
if raw_input() == "q": break

Ramses van Zon (SciNet HPC Consortium, Toronto) HPC Python Programming IHPCSS, June 2017 71 / 95

Notes about fork()

Fork was an early implementation used to spawn sub-processes, and is no longer commonly used.
Some things to remember if you try to use this approach:

use os.waitpid(child_pid) if you need to wait for the child process to finish. Otherwise
the parent will exit and the child will live on.

fork() is a Unix command. It doesn’t work on Windows, except under Cygwin.

This must be used very carefully, ALL the data is copied to the child process, including file
handles, open sockets, database connections. . .

Be sure to exit using os._exit(0) rather than os.exit(0), or else the child process will try to
clean up resources that the parent process is still using.

Because of the above, fork() can lead to code that is diffcult to maintain long-term.

Ramses van Zon (SciNet HPC Consortium, Toronto) HPC Python Programming IHPCSS, June 2017 72 / 95

Using fork in data analysis

Some notes about using forks in the context of data analysis:

Something you may have noticed the about fork examples thus far is the lack of return
from the functions.

Forked processes, being processes and not threads, do not share anything with the parent
process.

As such, the only way they can return anything to the parent function is through
inter-process communication.

This is possible, though a bit tricky. We’ll look at one way to do this later in the class.

Your best bet, from a data processing point of view, is to just use fork for one-time
functions that do not return anything to the parent.

Ramses van Zon (SciNet HPC Consortium, Toronto) HPC Python Programming IHPCSS, June 2017 73 / 95

Multiprocessing

Ramses van Zon (SciNet HPC Consortium, Toronto) HPC Python Programming IHPCSS, June 2017 74 / 95

Multiprocessing

The multiprocessing module tries to strike a balance between forks and threads:

Unlike fork, multiprocessing works on Windows (better portability).

Slightly longer start-up time than threads.

Multiprocessing spawns separate processes that run concurrently (like fork), and have their
own memory.

Multiprocessing requires pickleability for its processes on Windows, due to the way in which
it is implemented. As such, passing non-pickleable objects, such as sockets, to spawned
processes is not possible.

Ramses van Zon (SciNet HPC Consortium, Toronto) HPC Python Programming IHPCSS, June 2017 75 / 95

The multiprocessing module, continued

A few notes about the multiprocessing module:

The Process function launches a separate
process.

The syntax is very similar to the threading
module. This is intentional.

The details under the hood depend
strongly upon the system involved
(Windows, Mac, Linux), thus the
portability of code written with this
module.

summer_multiprocessing.py
import time, multiprocessing
from summer import my_summer
begin = time.time()
processes = []
for i in range(10):

p = multiprocessing.Process(
target = my_summer,
args = (0, 5000000))

processes.append(p)
p.start()

Wait for all processes to finish.
for p in processes: p.join()
print ("Elapsed:%f"%

time.time() - begin)

$ python summer_multiprocessing.py
Time:0.185396

Ramses van Zon (SciNet HPC Consortium, Toronto) HPC Python Programming IHPCSS, June 2017 76 / 95

Shared memory with multiprocessing
multiprocess allows one to seamlessly
share memory between processes. This is
done using ‘Value’ and ‘Array’.

Value is a wrapper around a strongly
typed object called a ctype. When
creating a Value, the first argument is
the variable type, the second is that value.

Code on the right has 10 processes add 50
increments of 1 to the Value v.

multiprocessing_shared.py
from multiprocessing import Process
from multiprocessing import Value
def myfun(v):

for i in range(50):
time.sleep(0.001)
v.value += 1

v = Value('i', 0);
procs = []
for i in range(10):

p=Process(target=myfun,args=(v,))
procs.append(p)
p.start()

for proc in procs: proc.join()
print(v.value)

$ etime python multiprocessing_shared.py
475
Elapsed: 0.15 seconds

Did the code behave as expect?

Ramses van Zon (SciNet HPC Consortium, Toronto) HPC Python Programming IHPCSS, June 2017 77 / 95

Shared memory with multiprocessing
multiprocess allows one to seamlessly
share memory between processes. This is
done using ‘Value’ and ‘Array’.

Value is a wrapper around a strongly
typed object called a ctype. When
creating a Value, the first argument is
the variable type, the second is that value.

Code on the right has 10 processes add 50
increments of 1 to the Value v.

multiprocessing_shared.py
from multiprocessing import Process
from multiprocessing import Value
def myfun(v):

for i in range(50):
time.sleep(0.001)
v.value += 1

v = Value('i', 0);
procs = []
for i in range(10):

p=Process(target=myfun,args=(v,))
procs.append(p)
p.start()

for proc in procs: proc.join()
print(v.value)

$ etime python multiprocessing_shared.py
475
Elapsed: 0.15 seconds

Did the code behave as expect?

Ramses van Zon (SciNet HPC Consortium, Toronto) HPC Python Programming IHPCSS, June 2017 77 / 95

Race conditions
What went wrong?

Race conditions occur when program instructions are executed in an order not intended by
the programmer. The most common cause is when multiple processes are given access to a
resource.

In the example here, we’ve modified a location in memory that is being accessed by
multiple processes.

Note that it need not only be processes or threads that can modify a resource, anything
can modify a resource, hardware or software.

Bugs caused by race conditions are extremely hard to find.

Disasters can occur.

Be very very careful when sharing resources between multiple processes or threads!

Ramses van Zon (SciNet HPC Consortium, Toronto) HPC Python Programming IHPCSS, June 2017 78 / 95

Using shared memory, continued
The solution, of course, is to be more explicit in your locking.

If you use shared memory, be sure to test everything thoroughly.

multiprocessing_shared_fixed.py
from multiprocessing import Process
from multiprocessing import Value
from multiprocessing import Lock

def myfun(v, lock):
for i in range(50):

time.sleep(0.001)
with lock:

v.value += 1

multiprocessing_shared_fixed.py
continued
v = Value('i', 0)
lock = Lock()
procs = []
for i in range(10):
p=Process(target=myfun,

args=(v,lock))
procs.append(p)
p.start()

for proc in procs: proc.join()
print(v.value)

$ etime python multiprocessing_shared_fixed.py
500
Elapsed: 0.16 seconds

Ramses van Zon (SciNet HPC Consortium, Toronto) HPC Python Programming IHPCSS, June 2017 79 / 95

Using shared memory, arrays

Multiprocessing also allows you to
share a block of memory through the
Array ctypes wrapper.

Only 1-D arrays are permitted.

Note that multiprocessing.Process must
be used; shared memory does not work
with multiprocessing.Pool.map.

Note that, since arr is actually a ctypes
object, you must print the contents of
arr to see the result.

multiprocessing_shared_array.py
from numpy import arange
from multiprocessing import Process,Array
def myfun(a, i):

a[i] = -a[i]
arr = Array('d', arange(10.))
procs = []
for i in range(10):

p = Process(target=myfun,
args=(arr, i))

procs.append(p)
p.start()

for proc in procs:
proc.join()

print(arr[:])

[-0.0, -1.0, -2.0, -3.0, -4.0, -5.0, -6.0, -7.0, -8.0, -9.0]

Ramses van Zon (SciNet HPC Consortium, Toronto) HPC Python Programming IHPCSS, June 2017 80 / 95

Using shared memory, arrays

Multiprocessing also allows you to
share a block of memory through the
Array ctypes wrapper.

Only 1-D arrays are permitted.

Note that multiprocessing.Process must
be used; shared memory does not work
with multiprocessing.Pool.map.

Note that, since arr is actually a ctypes
object, you must print the contents of
arr to see the result.

multiprocessing_shared_array.py
from numpy import arange
from multiprocessing import Process,Array
def myfun(a, i):

a[i] = -a[i]
arr = Array('d', arange(10.))
procs = []
for i in range(10):

p = Process(target=myfun,
args=(arr, i))

procs.append(p)
p.start()

for proc in procs:
proc.join()

print(arr[:])

[-0.0, -1.0, -2.0, -3.0, -4.0, -5.0, -6.0, -7.0, -8.0, -9.0]

Ramses van Zon (SciNet HPC Consortium, Toronto) HPC Python Programming IHPCSS, June 2017 80 / 95

But there’s more!

The multiprocessing module is loaded with functionality. Other features include:

Inter-process communciation, using Pipes and Queues.

multiprocessing.manager, which allows jobs to be spread over multiple ‘machines’ (nodes).

subclassing of the Process object, to allow further customization of the child process.

multiprocessing.Event, which allows event-driven programming options.

multiprocess.condition, which is used to synchronize processes.

We’re not going to cover these features today.

Ramses van Zon (SciNet HPC Consortium, Toronto) HPC Python Programming IHPCSS, June 2017 81 / 95

MPI4PY

Ramses van Zon (SciNet HPC Consortium, Toronto) HPC Python Programming IHPCSS, June 2017 82 / 95

Message Passing Interface

The previous parallel techniques used processors on one node.
Using more than one node requires these nodes to communicate.
MPI is one way of doing that communication.

MPI = Message Passing Interface.

MPI is a C/Fortran Library API.

Sending data = sending a message.

Requires setup of processes through mpirun/mpiexec.

Requires MPI_Init(...) in code to collect processes into a ‘communicator’.

Rather low level.

Ramses van Zon (SciNet HPC Consortium, Toronto) HPC Python Programming IHPCSS, June 2017 83 / 95

Mpi4py features

mpi4py is a wrapper around the mpi library

Point-to-point communication (sends, receives)

Collective (broadcasts, scatters, gathers) communications of any picklable Python object,

Optimized communications of Python object exposing the single-segment buffer interface
(NumPy arrays, builtin bytes/string/array objects).

Names of functions much the same as in C/Fortran, but are methods of the communicator
(object-oriented).

Ramses van Zon (SciNet HPC Consortium, Toronto) HPC Python Programming IHPCSS, June 2017 84 / 95

MPI C/C++ recap

The following C++ code determines each process’ rank and sends that rank to its left neighbor.

#include <mpi.h>
#include <iostream>
int main(int argc, char** argv) {
int rank, size, rankr, right, left;
MPI_Init(&argc, &argv);
MPI_Comm_rank(MPI_COMM_WORLD, &rank);
MPI_Comm_size(MPI_COMM_WORLD, &size);
right = (rank+1)%size;
left = (rank+size-1)%size;
MPI_Sendrecv(&rank, 1, MPI_INT, left, 13,

&rankr, 1, MPI_INT, right, 13,
MPI_COMM_WORLD, MPI_STATUS_IGNORE);

std::cout<<"I am rank "<<rank<<"; my right neighbour is "<<rankr<<"\n";
MPI_Finalize();

}

Ramses van Zon (SciNet HPC Consortium, Toronto) HPC Python Programming IHPCSS, June 2017 85 / 95

MPI Fortran recap
The following Fortran code determines each process’ rank and sends that rank to its left
neighbor.

program rightrank
use mpi
implicit none
integer rank, size, rankr, right, left, e
call MPI_Init(e)
call MPI_Comm_rank(MPI_COMM_WORLD, rank, e)
call MPI_Comm_size(MPI_COMM_WORLD, size, e)
right = mod(rank+1, size)
left = mod(rank+size-1, size)
call MPI_Sendrecv(rank, 1, MPI_INTEGER, left, 13, &

rankr, 1, MPI_INTEGER, right, 13, &
MPI_COMM_WORLD, MPI_STATUS_IGNORE, e)

print *, "I am rank ", rank, "; my right neighbour is ", rankr
call MPI_Finalize(e)

end program rightrank

Ramses van Zon (SciNet HPC Consortium, Toronto) HPC Python Programming IHPCSS, June 2017 86 / 95

Mpi4py
One of the drudgeries of MPI is to have to express the binary layout of your data.

The drudgery arises because C and Fortran do not have introspection and the MPI libraries
cannot look inside your code.

With Python, this is potentially different: we can investigate, within python, what the
structure is.

That means we should be able to express sending a piece of data without having to specify
types and amounts.

from mpi4py import MPI
rank = MPI.COMM_WORLD.Get_rank()
size = MPI.COMM_WORLD.Get_size()
right = (rank+1)%size
left = (rank+size-1)%size
rankr = MPI.COMM_WORLD.sendrecv(rank, left, source=right)
print "I am rank", rank, "; my right neighbour is", rankr

Ramses van Zon (SciNet HPC Consortium, Toronto) HPC Python Programming IHPCSS, June 2017 87 / 95

Mpi4py + numpy

It turns out that mpi4py’s communication is pickle-based.

Pickle is a serialization format which can convert any python object into a bytestream.

Convenient as any python object can be sent, but conversion takes time.

For numpy arrays, one can skip the pickling using Uppercase variants of the same
communicator methods.

However, this requires us to preallocate buffers to hold messages to be received.

Ramses van Zon (SciNet HPC Consortium, Toronto) HPC Python Programming IHPCSS, June 2017 88 / 95

Example: Area under the curve

Let’s consider a code that numerically
computes the following integral:

b =
∫ 3

x=0

(7
10

x3 − 2x2 + 4
)

dx

Exact answer b = 8.175

It’s the area under the curve on the right.

Method: sample y = 7
10x3 − 2x2 + 4 at a uniform grid of x values (using ntot number of

points), and add the y values.
Ramses van Zon (SciNet HPC Consortium, Toronto) HPC Python Programming IHPCSS, June 2017 89 / 95

Mpi4py+numpy: Upper/lowercase example

import sys
from mpi4py import MPI

rank = MPI.COMM_WORLD.Get_rank()
size = MPI.COMM_WORLD.Get_size()
ntot = int(sys.argv[1])
npnts = ntot/size
dx = 3.0/ntot
width = 3.0/size
x = rank*width
a = 0.0
for i in xrange(npnts):

y = 0.7*x**3 - 2*x**2 + 4
a += y*dx
x += dx

b = MPI.COMM_WORLD.reduce(a)
if rank == 0:

print "The area is", b

import sys
from mpi4py import MPI
from numpy import zeros, asarray
rank = MPI.COMM_WORLD.Get_rank()
size = MPI.COMM_WORLD.Get_size()
ntot = int(sys.argv[1])
npnts = ntot/size
dx = 3.0/ntot
width = 3.0/size
x = rank*width
a = 0.0
for i in xrange(npnts):

y = 0.7*x**3 - 2*x**2 + 4
a += y*dx
x += dx

b = np.zeros(1)
MPI.COMM_WORLD.Reduce(asarray(a),b)
if rank == 0:

print "The area is", b[0]

Ramses van Zon (SciNet HPC Consortium, Toronto) HPC Python Programming IHPCSS, June 2017 90 / 95

Mpi4py+numpy: Upper/lowercase example

import sys
from mpi4py import MPI

rank = MPI.COMM_WORLD.Get_rank()
size = MPI.COMM_WORLD.Get_size()
ntot = int(sys.argv[1])
npnts = ntot/size
dx = 3.0/ntot
width = 3.0/size
x = rank*width
a = 0.0
for i in xrange(npnts):

y = 0.7*x**3 - 2*x**2 + 4
a += y*dx
x += dx

b = MPI.COMM_WORLD.reduce(a)
if rank == 0:

print "The area is", b

import sys
from mpi4py import MPI
from numpy import zeros, asarray
rank = MPI.COMM_WORLD.Get_rank()
size = MPI.COMM_WORLD.Get_size()
ntot = int(sys.argv[1])
npnts = ntot/size
dx = 3.0/ntot
width = 3.0/size
x = rank*width
a = 0.0
for i in xrange(npnts):

y = 0.7*x**3 - 2*x**2 + 4
a += y*dx
x += dx

b = np.zeros(1)
MPI.COMM_WORLD.Reduce(asarray(a),b)
if rank == 0:

print "The area is", b[0]

Ramses van Zon (SciNet HPC Consortium, Toronto) HPC Python Programming IHPCSS, June 2017 90 / 95

Mpi4py Speedup?
$ etime mpirun -np 1 python auc.py 300000000
Traceback (most recent call last):

File "auc.py", line 4, in <module>
from mpi4py import MPI

ImportError: /home/rzon/.local/lib/python2.7/site-packages/mpi4py/MPI.so: undefined symbol: ompi_mpi_char
Elapsed: 0.23 seconds

$ etime mpirun -np 4 python auc.py 300000000
Traceback (most recent call last):

File "auc.py", line 4, in <module>
Traceback (most recent call last):

File "auc.py", line 4, in <module>
from mpi4py import MPI

ImportError: /home/rzon/.local/lib/python2.7/site-packages/mpi4py/MPI.so: undefined symbol: ompi_mpi_char
from mpi4py import MPI

ImportError: /home/rzon/.local/lib/python2.7/site-packages/mpi4py/MPI.so: undefined symbol: ompi_mpi_char
Traceback (most recent call last):

File "auc.py", line 4, in <module>
from mpi4py import MPI

ImportError: /home/rzon/.local/lib/python2.7/site-packages/mpi4py/MPI.so: undefined symbol: ompi_mpi_char
Traceback (most recent call last):

File "auc.py", line 4, in <module>
from mpi4py import MPI

ImportError: /home/rzon/.local/lib/python2.7/site-packages/mpi4py/MPI.so: undefined symbol: ompi_mpi_char
Elapsed: 0.22 seconds

$ etime mpirun -np 4 python auc_numpy.py 300000000
Traceback (most recent call last):

File "auc_numpy.py", line 4, in <module>
Traceback (most recent call last):

File "auc_numpy.py", line 4, in <module>
Traceback (most recent call last):

File "auc_numpy.py", line 4, in <module>
from mpi4py import MPI

ImportError: /home/rzon/.local/lib/python2.7/site-packages/mpi4py/MPI.so: undefined symbol: ompi_mpi_char
from mpi4py import MPI

ImportError: /home/rzon/.local/lib/python2.7/site-packages/mpi4py/MPI.so: undefined symbol: ompi_mpi_char
from mpi4py import MPI

ImportError: /home/rzon/.local/lib/python2.7/site-packages/mpi4py/MPI.so: undefined symbol: ompi_mpi_char
Traceback (most recent call last):

File "auc_numpy.py", line 4, in <module>
from mpi4py import MPI

ImportError: /home/rzon/.local/lib/python2.7/site-packages/mpi4py/MPI.so: undefined symbol: ompi_mpi_char
Elapsed: 0.22 seconds

There simply isn’t enough communication to see the difference between the pickled and
non-pickled interface.

Ramses van Zon (SciNet HPC Consortium, Toronto) HPC Python Programming IHPCSS, June 2017 91 / 95

Mpi4py Speedup?
$ etime mpirun -np 1 python auc.py 300000000
Traceback (most recent call last):

File "auc.py", line 4, in <module>
from mpi4py import MPI

ImportError: /home/rzon/.local/lib/python2.7/site-packages/mpi4py/MPI.so: undefined symbol: ompi_mpi_char
Elapsed: 0.23 seconds

$ etime mpirun -np 4 python auc.py 300000000
Traceback (most recent call last):

File "auc.py", line 4, in <module>
Traceback (most recent call last):

File "auc.py", line 4, in <module>
from mpi4py import MPI

ImportError: /home/rzon/.local/lib/python2.7/site-packages/mpi4py/MPI.so: undefined symbol: ompi_mpi_char
from mpi4py import MPI

ImportError: /home/rzon/.local/lib/python2.7/site-packages/mpi4py/MPI.so: undefined symbol: ompi_mpi_char
Traceback (most recent call last):

File "auc.py", line 4, in <module>
from mpi4py import MPI

ImportError: /home/rzon/.local/lib/python2.7/site-packages/mpi4py/MPI.so: undefined symbol: ompi_mpi_char
Traceback (most recent call last):

File "auc.py", line 4, in <module>
from mpi4py import MPI

ImportError: /home/rzon/.local/lib/python2.7/site-packages/mpi4py/MPI.so: undefined symbol: ompi_mpi_char
Elapsed: 0.22 seconds

$ etime mpirun -np 4 python auc_numpy.py 300000000
Traceback (most recent call last):

File "auc_numpy.py", line 4, in <module>
Traceback (most recent call last):

File "auc_numpy.py", line 4, in <module>
Traceback (most recent call last):

File "auc_numpy.py", line 4, in <module>
from mpi4py import MPI

ImportError: /home/rzon/.local/lib/python2.7/site-packages/mpi4py/MPI.so: undefined symbol: ompi_mpi_char
from mpi4py import MPI

ImportError: /home/rzon/.local/lib/python2.7/site-packages/mpi4py/MPI.so: undefined symbol: ompi_mpi_char
from mpi4py import MPI

ImportError: /home/rzon/.local/lib/python2.7/site-packages/mpi4py/MPI.so: undefined symbol: ompi_mpi_char
Traceback (most recent call last):

File "auc_numpy.py", line 4, in <module>
from mpi4py import MPI

ImportError: /home/rzon/.local/lib/python2.7/site-packages/mpi4py/MPI.so: undefined symbol: ompi_mpi_char
Elapsed: 0.22 seconds

There simply isn’t enough communication to see the difference between the pickled and
non-pickled interface.

Ramses van Zon (SciNet HPC Consortium, Toronto) HPC Python Programming IHPCSS, June 2017 91 / 95

Mpi4py Speedup?
$ etime mpirun -np 1 python auc.py 300000000
Traceback (most recent call last):

File "auc.py", line 4, in <module>
from mpi4py import MPI

ImportError: /home/rzon/.local/lib/python2.7/site-packages/mpi4py/MPI.so: undefined symbol: ompi_mpi_char
Elapsed: 0.23 seconds

$ etime mpirun -np 4 python auc.py 300000000
Traceback (most recent call last):

File "auc.py", line 4, in <module>
Traceback (most recent call last):

File "auc.py", line 4, in <module>
from mpi4py import MPI

ImportError: /home/rzon/.local/lib/python2.7/site-packages/mpi4py/MPI.so: undefined symbol: ompi_mpi_char
from mpi4py import MPI

ImportError: /home/rzon/.local/lib/python2.7/site-packages/mpi4py/MPI.so: undefined symbol: ompi_mpi_char
Traceback (most recent call last):

File "auc.py", line 4, in <module>
from mpi4py import MPI

ImportError: /home/rzon/.local/lib/python2.7/site-packages/mpi4py/MPI.so: undefined symbol: ompi_mpi_char
Traceback (most recent call last):

File "auc.py", line 4, in <module>
from mpi4py import MPI

ImportError: /home/rzon/.local/lib/python2.7/site-packages/mpi4py/MPI.so: undefined symbol: ompi_mpi_char
Elapsed: 0.22 seconds

$ etime mpirun -np 4 python auc_numpy.py 300000000
Traceback (most recent call last):

File "auc_numpy.py", line 4, in <module>
Traceback (most recent call last):

File "auc_numpy.py", line 4, in <module>
Traceback (most recent call last):

File "auc_numpy.py", line 4, in <module>
from mpi4py import MPI

ImportError: /home/rzon/.local/lib/python2.7/site-packages/mpi4py/MPI.so: undefined symbol: ompi_mpi_char
from mpi4py import MPI

ImportError: /home/rzon/.local/lib/python2.7/site-packages/mpi4py/MPI.so: undefined symbol: ompi_mpi_char
from mpi4py import MPI

ImportError: /home/rzon/.local/lib/python2.7/site-packages/mpi4py/MPI.so: undefined symbol: ompi_mpi_char
Traceback (most recent call last):

File "auc_numpy.py", line 4, in <module>
from mpi4py import MPI

ImportError: /home/rzon/.local/lib/python2.7/site-packages/mpi4py/MPI.so: undefined symbol: ompi_mpi_char
Elapsed: 0.22 seconds

There simply isn’t enough communication to see the difference between the pickled and
non-pickled interface.

Ramses van Zon (SciNet HPC Consortium, Toronto) HPC Python Programming IHPCSS, June 2017 91 / 95

Mpi4py Speedup?
$ etime mpirun -np 1 python auc.py 300000000
Traceback (most recent call last):

File "auc.py", line 4, in <module>
from mpi4py import MPI

ImportError: /home/rzon/.local/lib/python2.7/site-packages/mpi4py/MPI.so: undefined symbol: ompi_mpi_char
Elapsed: 0.23 seconds

$ etime mpirun -np 4 python auc.py 300000000
Traceback (most recent call last):

File "auc.py", line 4, in <module>
Traceback (most recent call last):

File "auc.py", line 4, in <module>
from mpi4py import MPI

ImportError: /home/rzon/.local/lib/python2.7/site-packages/mpi4py/MPI.so: undefined symbol: ompi_mpi_char
from mpi4py import MPI

ImportError: /home/rzon/.local/lib/python2.7/site-packages/mpi4py/MPI.so: undefined symbol: ompi_mpi_char
Traceback (most recent call last):

File "auc.py", line 4, in <module>
from mpi4py import MPI

ImportError: /home/rzon/.local/lib/python2.7/site-packages/mpi4py/MPI.so: undefined symbol: ompi_mpi_char
Traceback (most recent call last):

File "auc.py", line 4, in <module>
from mpi4py import MPI

ImportError: /home/rzon/.local/lib/python2.7/site-packages/mpi4py/MPI.so: undefined symbol: ompi_mpi_char
Elapsed: 0.22 seconds

$ etime mpirun -np 4 python auc_numpy.py 300000000
Traceback (most recent call last):

File "auc_numpy.py", line 4, in <module>
Traceback (most recent call last):

File "auc_numpy.py", line 4, in <module>
Traceback (most recent call last):

File "auc_numpy.py", line 4, in <module>
from mpi4py import MPI

ImportError: /home/rzon/.local/lib/python2.7/site-packages/mpi4py/MPI.so: undefined symbol: ompi_mpi_char
from mpi4py import MPI

ImportError: /home/rzon/.local/lib/python2.7/site-packages/mpi4py/MPI.so: undefined symbol: ompi_mpi_char
from mpi4py import MPI

ImportError: /home/rzon/.local/lib/python2.7/site-packages/mpi4py/MPI.so: undefined symbol: ompi_mpi_char
Traceback (most recent call last):

File "auc_numpy.py", line 4, in <module>
from mpi4py import MPI

ImportError: /home/rzon/.local/lib/python2.7/site-packages/mpi4py/MPI.so: undefined symbol: ompi_mpi_char
Elapsed: 0.22 seconds

There simply isn’t enough communication to see the difference between the pickled and
non-pickled interface.

Ramses van Zon (SciNet HPC Consortium, Toronto) HPC Python Programming IHPCSS, June 2017 91 / 95

Hands-on

1 Use multiprocessing to parallelize the auc.py code.
2 Use numexpr to parallelize the auc.py code.
3 What else could we do to speed up the code?

Ramses van Zon (SciNet HPC Consortium, Toronto) HPC Python Programming IHPCSS, June 2017 92 / 95

Map/Reduce variations

Ramses van Zon (SciNet HPC Consortium, Toronto) HPC Python Programming IHPCSS, June 2017 93 / 95

Map/reduce

The diffusion example is, as already admitted, a hard problem to get good performance out
of with python.

That was because it’s a tightly coupled problem.

Other problems aren’t, e.g.:
I Parameter sweeps
I Reductions
I Big data

For such problems, there are some valuable frameworks of the map/reduce variety,
e.g. IPython Parallel or Spark (Friday).

Ramses van Zon (SciNet HPC Consortium, Toronto) HPC Python Programming IHPCSS, June 2017 94 / 95

Common characteristics in map/reduce

A master process + worker processes

Master divides or requests work, and collects results

Overall workflow is data based:
1 Data is distributed over workers (or already resides there), and workers perform computation

on their local data
2 If reduction: data is moved between workers, and work is done by ‘reducers’. This step is

iterative.
3 Result is reported to the master.

Emphasis on distributing the work and bringing the work to the data. Works well if ‘work
chuncks’ take a good bit of time.

Examples: IPython Parallel, Spark

Ramses van Zon (SciNet HPC Consortium, Toronto) HPC Python Programming IHPCSS, June 2017 95 / 95

	Getting started
	Introduction
	Performance tuning tools for Python
	Numpy: faster numerical arrays for python
	Out-of-core computations
	Parallel Python
	Numexpr
	Processes and threads in python
	Threads in Python
	Forking
	Multiprocessing
	MPI4PY
	Map/Reduce variations

