BIOMEDICAL ENGINEERING Integrating Engineering and HPC to Solve Multi-physics Challenges

Stephanie TerMaath, PhD, PE Mechanical, Aerospace, and Biomedical Engineering compmech.utk.edu

stermaat@utk.edu

Key Points

• Multi-disciplinary teams

Big Data interpretation for design optimization

Validation, validation, and more validation!

Problem Definition

Hydrocephalus: The Invisible Disability

- "Hydro" water, "Cephalus" head
- Characterized as excess Cerebrospinal Fluid (CSF) in the ventricles of the brain
- Difficult to diagnose invasive testing
- No known cure

Attribution: © Nevit Dilmen

Prevalence of Hydrocephalus

- Chronic medical condition that affects over a million people in the US from newborns to the elderly
- Congenital
 - As common as Down's Syndrome
 - Most common reason for brain surgery in children
- Acquired
 - Secondary effect of traumatic brain injury, disease, or blockage
 - Impacts 0.5% of the population over 65 years old
 - Likely an underestimate due to lack of recognition by patients and physicians
 - Misdiagnosed as normal aging or dementia

A newborn has a 1/500 chance of being born with hydrocephalus and facing a lifetime of brain surgeries.

Symptoms

- Result of compression of neural structures due to increased intracranial pressure
- Headaches, nausea, papilledema, seizures, learning disabilities, motor skills impairment
- Symptoms can be debilitating and cause extreme patient suffering.

If left untreated, hydrocephalus can result in death.

Treatment: Ventriculoperitoneal Shunt

Shunts are an effective treatment for brain disorders to prevent brain damage and death.

The shunt system was developed 50 YEARS ago.

Failure Rate of Shunts

- One surgery every 15 minutes
 - Over $\frac{1}{2}$ are a life or death situation
 - Only 30% are the patient's first surgery
- Over 50% of shunts require revision in the first year and 90% require revision within 10 years.
- Statistically, hydrocephalous patients require between 2 to 4 surgeries for shunt insertion or revision in a 10 year period after their initial diagnosis.

Solutions: Multi-Disciplinary Teams

- Goal is to *actively* involve people from disparate fields and areas of expertise
- Including people from diverse backgrounds allows the team to "redefine problems outside of normal boundaries" (*Wikipedia*)
- Team objective is to develop innovative and revolutionary solutions to existing and emerging problems.

Communication: Fluid Structure Interaction

Expertise Translation: Catheter Design

Group Exercise

- 1. Develop a research approach using HPC to redesigning the ventricular catheter.
- 2. Staff your multi-disciplinary research and development team.

Problem Solution

stermaat@utk.edu

Multi-Disciplinary Collaboration

Improved design and optimization of ventricular catheters requires the integration of many diverse fields.

Integrated Approach

Experimental: Characterization and Validation

Current Design Flaw

Water and India Ink Experiments: Time-Lapse

Code Coupling on Darter/Beacon

Parametric Input Files

Exploration of limited design space: trillions of combinations

Global Sensitivity Analysis Requirement

Ta

Latin Stratified Sampling (Dr. Michael Shields – JHU)

Surrogate Model

Use computing hours wisely.

Coupled Sensitivity Analysis and Optimization

HPC Redesign – 5 hours

14.27% (baseline), 4.5% (Rivulet), and 0.30% (HPC optimized)

Missing Complexity

- In-vivo operating conditions
 - FSI: CSF interaction with ventricle wall and catheter
 - Transient effects due to valve opening
 - Catheter location
 - Obstructions
- Ventricle modeling
 - Rigid
 - 3-layer model
- Varying catheter configuration/materials

Rigid Ventricle Model

Visualization of flow field 0.124 ms after valve opening. The surfaces of the ventricle and 8-hole catheter are colored by pressure and streamlines are colored by speed.

Disease Crisis News Alert

A new disease has been identified with 100% fatality rate.

Acknowledgment

This research was supported by the Science Alliance at the University of Tennessee, Knoxville, thorough the Joint Directed Research and Development (JDRD) Collaborative Cohort Program Fellowship.