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The History of Climate
Modeling
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Anomalies are deviation from baseline (1981-2010 Average).

The black thin line indicates surface temperature anomaly of each year.
The blue line indicates their 5-year running mean.

The red line indicates the long-term linear trend.




Two Views on Global Warming:
Climate Scientists and Skeptics
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How Realists View Global Warming
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The reasons for “hiatus periods” are unclear, some research indicates that

heat goes into the deeper ocean or caused by smaller volcanic eruptions

that adds aerosols to the atmosphere.



Global Surface Temperature
El Nifo vs. La Nifia years

Annual Temperature vs 1951-1980 average ('C)
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Laws of Physics, Chemistry, and Biology

» Equations govern the dynamics of atmosphere,
ocean, vegetation, and sea ice

» Equations put into a form that can be solved on
modern multi-processor computer systems

* Physical processes such as precipitation,
radiation (solar and terrestrial), vegetation,
boundary transfers of heat, momentum, and
moisture at earth's surface are included

» Forcings: GHGs, Volcanic, Solar variations



Mathematical Equations (known since 1904)
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Late 1950s and Early 1960s Climate Modeling
groups
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The Community Earth System Model (CESM)
is becoming more complete

. Includes the Atmosphere,
Incoming Solar Land, Oceans, Ice, and Biosphere
Energy Outgoing Heat
Energy
Transition from
Solid to Vapor
Evaporative
and Heat Energy
o~ Exchang
Stratus Clouds : Cumulus Cirrus Clouds Atmospheric
Aﬁ',mh Clouds GCM
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Atmosphere
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Stratus Clouds

A DOE and NSF
supported activity



Timeline of Climate Model Development
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Part of the
global grid
(25 km) for
the next
IPCC
simulations

1/4 degree grid

~ RAARLLS




Vertical 6rid

- Vertical resolution is also

important for quality of simulations

- Levels are not equally spaced
(levels are closer near surface and

near tropopause where rapid
changes occurs)

* In CAM: “hybrid" coordinate

- bottom: sigma coordinate (follows

topography)

- Top: pressure coordinate

- middle: hybrid sigma-pressure
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The Pole Problem!



Atmospheric Grid Structure in the
1960s and 1970s

LATITUDE-LONGITUDE GRID

Problem near the poles
where longitudes
converge

HEE




Novel Solution to the Pole Problem

by Sadourny (1972)

CUBED SPHERE GRID
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Kurihara or Reduced 6rid
KURIHARA OR REDUCED GRID

Many variants
of this by
others.




The Icosahedral Solution

SPHERICAL GEODESIC
OR ICOSAHEDRAL GRID

Being tested
\, by Dave Randall

Still to be ™
Investigated!



Yin-Yang 6Grids

YIN-YANG GRID

YANG GRID

YIN GRID

[l

Note...no pole problem but lots of interpolation!

Kameyama et al. (2004)



Grids: Latitude-longitude,
Cubed-Sphere, icosahedral
(hexagons and pentagons)




Ocean Parallel Ocean Program (POP)

Tripole grid

Third pole at South Pole



L. F. Richard HPC Scheme in 1920s

Peter Lynch
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The Weather Forecasting Factory by Stephen Conlin.The working of the forecast factory is co-ordinated by a
director of operations. Standing on a central dais, he synchronises the computations



Parallel and Sequential Integration
HPC

Computational Design Question

Parallel Integration
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time

time

processors

CCSM4/CPL7 Ar'chi'rec'rur'e

Original Multiple Executable CCSM3 architecture (cpl6)

S |Ee

New Single Executable CCSM4 architecture (cpl7)

Sequential Layout

[ Driver (controls time evolution) ]

processors

Hybrid Sequential/Concurrent Layouts
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Advantages of CLP7 Design

* New flexible coupling strategy

— Provides efficient support of varying levels of parallelism via
simple run-time configuration for processor layout

 Scientific unification
— ALL

« Code Reuse and Maintainability



More CPL7 advantages...

« Simplicity
— Easier to debug
- Easier to port

— Easier to run

« Performance (throughput and efficiency)



CCSM4 Provides a Seamless End-to-End Cycle of Model
Development, Integration and Prediction with
One Unified Model Code Base

Integrated Assessment
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Model Parameterization Low-Resolution High-Resolution
Regional Development Paleo IPCC
* University Community NRCM

Total (convective and large-scale)
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Left panel is the total precipitation rate in the Single Column Model (SCM). Middle panel is sea surface
temperature change (°C) for 17,000 years ago as simulated by low-resolution version of CCSM3 when meltwater
off the North American and European ice sheets (purple) is added to the North Atlantic Ocean. Right panel is sea
surface temperature in the Pacific Ocean south of Japan in an ultra-high-resolution coupled simulation that uses a
0.25° atmosphere and land coupled to a 0.1° ocean and sea ice model. Note the reduction in sea surface
temperature to the right of the category 4 typhoon storm track.




CPL7 permits new
extensions of coupling
capability

Implementation of
interactive ensembles
provides a great example!



Examples of Simulations









Geographical Pattern of 8.5 RCP
at year 2100

Annual Global Surface Temperature Anomaly
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Climate and Earth System models have and continue to

#

contribute to understanding and pr ing the clima’re’
system. They allow the science commtnity to determineses
objectively the possible impacts of climate change on

food production, flooding, drought, sea level rise, and

health as well as decision support. Higher resolution and
more complete models will help.

From Istockphoto.com
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National Medal of Science




The End

Animations provided by Los Alamos National
Laboratory (LANL), NASA and NCAR
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Tropical storms, hurricanes, and intense hurricanes for
high resolution (25 km) afmospheric model(AM5) M.
Wehner
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Leading Mode of Global SST Variability
Seasonal Capability (Neale, NCAR)
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Velocities
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Each Country's Share of 2011 Total Carbon Dioxide Emissions
from the Consumption of Energy

have signed an
Agreement to
Cut emissions
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